Loading…

Constant sign solutions for second-order m-point boundary-value problems

We will study the existence of constant sign solutions for the second-order m-point boundary-value problem $$displaylines{ u''(t)+f(t,u(t))=0,quad tin(0,1),cr u(0)=0, quad u(1)=sum^{m-2}_{i=1}alpha_i u(eta_i), }$$ where $mgeq3$, $eta_iin(0,1)$ and $alpha_i>0$ for $i=1,dots,m-2$, with $s...

Full description

Saved in:
Bibliographic Details
Published in:Electronic journal of differential equations 2013-03, Vol.2013 (65), p.1-7
Main Author: Jingping Yang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue 65
container_start_page 1
container_title Electronic journal of differential equations
container_volume 2013
creator Jingping Yang
description We will study the existence of constant sign solutions for the second-order m-point boundary-value problem $$displaylines{ u''(t)+f(t,u(t))=0,quad tin(0,1),cr u(0)=0, quad u(1)=sum^{m-2}_{i=1}alpha_i u(eta_i), }$$ where $mgeq3$, $eta_iin(0,1)$ and $alpha_i>0$ for $i=1,dots,m-2$, with $sum^{m-2}_{i=1}alpha_i
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f6b00f52f8d74b709dc93542d03e49b7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f6b00f52f8d74b709dc93542d03e49b7</doaj_id><sourcerecordid>oai_doaj_org_article_f6b00f52f8d74b709dc93542d03e49b7</sourcerecordid><originalsourceid>FETCH-LOGICAL-d221t-3c6287dc2feb63fea955a2c94032b9bbab1a83c09a850cb7dd431b289f6e3a543</originalsourceid><addsrcrecordid>eNotjstKxDAYRrNQcBx9h7xAIPc0SynqDAy4cdblz23I0DYl6Qi-vUVdHTgcPr47tGPUcKK1ZQ_osbUrpcxKLnfo0Je5rTCvuOXLjFsZb2veFE6l4hZ9mQMpNcSKJ7KUvHWu3OYA9Zt8wXiLeKnFjXFqT-g-wdji8z_36Pz2-tkfyOnj_di_nEjgnK1EeM07EzxP0WmRIlilgHsrqeDOOgeOQSc8tdAp6p0JQQrmeGeTjgKUFHt0_NsNBa7DUvO0fRkK5OFXlHoZoK7Zj3FI2lGaFE9dMNIZaoO3QkkeqIjSOiN-AG7IVWY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constant sign solutions for second-order m-point boundary-value problems</title><source>Directory of Open Access Journals</source><creator>Jingping Yang</creator><creatorcontrib>Jingping Yang</creatorcontrib><description>We will study the existence of constant sign solutions for the second-order m-point boundary-value problem $$displaylines{ u''(t)+f(t,u(t))=0,quad tin(0,1),cr u(0)=0, quad u(1)=sum^{m-2}_{i=1}alpha_i u(eta_i), }$$ where $mgeq3$, $eta_iin(0,1)$ and $alpha_i&gt;0$ for $i=1,dots,m-2$, with $sum^{m-2}_{i=1}alpha_i&lt;1$, we obtain that there exist at least a positive and a negative solution for the above problem. Our approach is based on unilateral global bifurcation theorem.</description><identifier>ISSN: 1072-6691</identifier><language>eng</language><publisher>Texas State University</publisher><subject>bifurcation methods ; Constant sign solutions ; eigenvalue</subject><ispartof>Electronic journal of differential equations, 2013-03, Vol.2013 (65), p.1-7</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2102</link.rule.ids></links><search><creatorcontrib>Jingping Yang</creatorcontrib><title>Constant sign solutions for second-order m-point boundary-value problems</title><title>Electronic journal of differential equations</title><description>We will study the existence of constant sign solutions for the second-order m-point boundary-value problem $$displaylines{ u''(t)+f(t,u(t))=0,quad tin(0,1),cr u(0)=0, quad u(1)=sum^{m-2}_{i=1}alpha_i u(eta_i), }$$ where $mgeq3$, $eta_iin(0,1)$ and $alpha_i&gt;0$ for $i=1,dots,m-2$, with $sum^{m-2}_{i=1}alpha_i&lt;1$, we obtain that there exist at least a positive and a negative solution for the above problem. Our approach is based on unilateral global bifurcation theorem.</description><subject>bifurcation methods</subject><subject>Constant sign solutions</subject><subject>eigenvalue</subject><issn>1072-6691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNotjstKxDAYRrNQcBx9h7xAIPc0SynqDAy4cdblz23I0DYl6Qi-vUVdHTgcPr47tGPUcKK1ZQ_osbUrpcxKLnfo0Je5rTCvuOXLjFsZb2veFE6l4hZ9mQMpNcSKJ7KUvHWu3OYA9Zt8wXiLeKnFjXFqT-g-wdji8z_36Pz2-tkfyOnj_di_nEjgnK1EeM07EzxP0WmRIlilgHsrqeDOOgeOQSc8tdAp6p0JQQrmeGeTjgKUFHt0_NsNBa7DUvO0fRkK5OFXlHoZoK7Zj3FI2lGaFE9dMNIZaoO3QkkeqIjSOiN-AG7IVWY</recordid><startdate>20130305</startdate><enddate>20130305</enddate><creator>Jingping Yang</creator><general>Texas State University</general><scope>DOA</scope></search><sort><creationdate>20130305</creationdate><title>Constant sign solutions for second-order m-point boundary-value problems</title><author>Jingping Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d221t-3c6287dc2feb63fea955a2c94032b9bbab1a83c09a850cb7dd431b289f6e3a543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>bifurcation methods</topic><topic>Constant sign solutions</topic><topic>eigenvalue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jingping Yang</creatorcontrib><collection>Directory of Open Access Journals</collection><jtitle>Electronic journal of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jingping Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constant sign solutions for second-order m-point boundary-value problems</atitle><jtitle>Electronic journal of differential equations</jtitle><date>2013-03-05</date><risdate>2013</risdate><volume>2013</volume><issue>65</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1072-6691</issn><abstract>We will study the existence of constant sign solutions for the second-order m-point boundary-value problem $$displaylines{ u''(t)+f(t,u(t))=0,quad tin(0,1),cr u(0)=0, quad u(1)=sum^{m-2}_{i=1}alpha_i u(eta_i), }$$ where $mgeq3$, $eta_iin(0,1)$ and $alpha_i&gt;0$ for $i=1,dots,m-2$, with $sum^{m-2}_{i=1}alpha_i&lt;1$, we obtain that there exist at least a positive and a negative solution for the above problem. Our approach is based on unilateral global bifurcation theorem.</abstract><pub>Texas State University</pub><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-6691
ispartof Electronic journal of differential equations, 2013-03, Vol.2013 (65), p.1-7
issn 1072-6691
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f6b00f52f8d74b709dc93542d03e49b7
source Directory of Open Access Journals
subjects bifurcation methods
Constant sign solutions
eigenvalue
title Constant sign solutions for second-order m-point boundary-value problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constant%20sign%20solutions%20for%20second-order%20m-point%20boundary-value%20problems&rft.jtitle=Electronic%20journal%20of%20differential%20equations&rft.au=Jingping%20Yang&rft.date=2013-03-05&rft.volume=2013&rft.issue=65&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1072-6691&rft_id=info:doi/&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_f6b00f52f8d74b709dc93542d03e49b7%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d221t-3c6287dc2feb63fea955a2c94032b9bbab1a83c09a850cb7dd431b289f6e3a543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true