Loading…
Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation
Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) development . However, for a reliable quantitative analysis of cortical volume and sulcal folding, accurate and automated segm...
Saved in:
Published in: | Frontiers in neuroscience 2020-12, Vol.14, p.591683-591683 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3 |
container_end_page | 591683 |
container_issue | |
container_start_page | 591683 |
container_title | Frontiers in neuroscience |
container_volume | 14 |
creator | Hong, Jinwoo Yun, Hyuk Jin Park, Gilsoon Kim, Seonggyu Laurentys, Cynthia T Siqueira, Leticia C Tarui, Tomo Rollins, Caitlin K Ortinau, Cynthia M Grant, P Ellen Lee, Jong-Min Im, Kiho |
description | Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) development
. However, for a reliable quantitative analysis of cortical volume and sulcal folding, accurate and automated segmentation of the CP is crucial. In this study, we propose a fully convolutional neural network for the automatic segmentation of the CP. We developed a novel hybrid loss function to improve the segmentation accuracy and adopted multi-view (axial, coronal, and sagittal) aggregation with a test-time augmentation method to reduce errors using three-dimensional (3D) information and multiple predictions. We evaluated our proposed method using the ten-fold cross-validation of 52 fetal brain MR images (22.9-31.4 weeks of gestation). The proposed method obtained Dice coefficients of 0.907 ± 0.027 and 0.906 ± 0.031 as well as a mean surface distance error of 0.182 ± 0.058 mm and 0.185 ± 0.069 mm for the left and right, respectively. In addition, the left and right CP volumes, surface area, and global mean curvature generated by automatic segmentation showed a high correlation with the values generated by manual segmentation (
> 0.941). We also demonstrated that the proposed hybrid loss function and the combination of multi-view aggregation and test-time augmentation significantly improved the CP segmentation accuracy. Our proposed segmentation method will be useful for the automatic and reliable quantification of the cortical structure in the fetal brain. |
doi_str_mv | 10.3389/fnins.2020.591683 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f6b62c5e502d465dae9e0241cf6a2b47</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f6b62c5e502d465dae9e0241cf6a2b47</doaj_id><sourcerecordid>2466107827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3</originalsourceid><addsrcrecordid>eNpdkk9vEzEQxS0EoqXwAbiglbhwSer_670gVRGBSi1FggpuluOd3To469T2FvXb401KRHvyaPzmpzejh9BbgueMqea0G9yQ5hRTPBcNkYo9Q8dESjrjgv16fqi5OkKvUlpjLKni9CU6YoxxRpU8Ru0SsvHVIsTsbCm-eZOh-g79BoZssgtDdZ3c0FfL0fv7ohvugh-nfhF_hfwnxN-p-unyTXU5-uy2HibGANVZ30fod4jX6EVnfII3D-8Jul5--rH4Mru4-ny-OLuYWd6wPKPUcmiNVbhubdsVh7UCA0DJikpOKDGKN5ZRQZRhjRTMNhJ3xFhhagIdsBN0vue2waz1NrqNifc6GKd3jRB7baY9PehOriS1AgSmLZeiNdAAppzYThq64nVhfdyztuNqA60t54jGP4I-_hncje7Dna5rprjCBfDhARDD7Qgp641LFvx0nDAmTXlNBBOkoUX6_ol0HcZYLjyppCS4VnRyRPYqG0NKEbqDGYL1lAe9y4Oe8qD3eSgz7_7f4jDxLwDsLzTAs70</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466107827</pqid></control><display><type>article</type><title>Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Hong, Jinwoo ; Yun, Hyuk Jin ; Park, Gilsoon ; Kim, Seonggyu ; Laurentys, Cynthia T ; Siqueira, Leticia C ; Tarui, Tomo ; Rollins, Caitlin K ; Ortinau, Cynthia M ; Grant, P Ellen ; Lee, Jong-Min ; Im, Kiho</creator><creatorcontrib>Hong, Jinwoo ; Yun, Hyuk Jin ; Park, Gilsoon ; Kim, Seonggyu ; Laurentys, Cynthia T ; Siqueira, Leticia C ; Tarui, Tomo ; Rollins, Caitlin K ; Ortinau, Cynthia M ; Grant, P Ellen ; Lee, Jong-Min ; Im, Kiho</creatorcontrib><description>Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) development
. However, for a reliable quantitative analysis of cortical volume and sulcal folding, accurate and automated segmentation of the CP is crucial. In this study, we propose a fully convolutional neural network for the automatic segmentation of the CP. We developed a novel hybrid loss function to improve the segmentation accuracy and adopted multi-view (axial, coronal, and sagittal) aggregation with a test-time augmentation method to reduce errors using three-dimensional (3D) information and multiple predictions. We evaluated our proposed method using the ten-fold cross-validation of 52 fetal brain MR images (22.9-31.4 weeks of gestation). The proposed method obtained Dice coefficients of 0.907 ± 0.027 and 0.906 ± 0.031 as well as a mean surface distance error of 0.182 ± 0.058 mm and 0.185 ± 0.069 mm for the left and right, respectively. In addition, the left and right CP volumes, surface area, and global mean curvature generated by automatic segmentation showed a high correlation with the values generated by manual segmentation (
> 0.941). We also demonstrated that the proposed hybrid loss function and the combination of multi-view aggregation and test-time augmentation significantly improved the CP segmentation accuracy. Our proposed segmentation method will be useful for the automatic and reliable quantification of the cortical structure in the fetal brain.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2020.591683</identifier><identifier>PMID: 33343286</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Accuracy ; Algorithms ; Brain ; cortical plate ; Deep learning ; Diabetes ; fetal brain ; Fetuses ; Gestation ; hybrid loss ; Magnetic resonance imaging ; Methods ; MRI ; Neural networks ; Neuroimaging ; Neuroscience ; Registration ; Segmentation ; Ultrasonic imaging</subject><ispartof>Frontiers in neuroscience, 2020-12, Vol.14, p.591683-591683</ispartof><rights>Copyright © 2020 Hong, Yun, Park, Kim, Laurentys, Siqueira, Tarui, Rollins, Ortinau, Grant, Lee and Im.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2020 Hong, Yun, Park, Kim, Laurentys, Siqueira, Tarui, Rollins, Ortinau, Grant, Lee and Im. 2020 Hong, Yun, Park, Kim, Laurentys, Siqueira, Tarui, Rollins, Ortinau, Grant, Lee and Im</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3</citedby><cites>FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2466107827/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2466107827?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33343286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Jinwoo</creatorcontrib><creatorcontrib>Yun, Hyuk Jin</creatorcontrib><creatorcontrib>Park, Gilsoon</creatorcontrib><creatorcontrib>Kim, Seonggyu</creatorcontrib><creatorcontrib>Laurentys, Cynthia T</creatorcontrib><creatorcontrib>Siqueira, Leticia C</creatorcontrib><creatorcontrib>Tarui, Tomo</creatorcontrib><creatorcontrib>Rollins, Caitlin K</creatorcontrib><creatorcontrib>Ortinau, Cynthia M</creatorcontrib><creatorcontrib>Grant, P Ellen</creatorcontrib><creatorcontrib>Lee, Jong-Min</creatorcontrib><creatorcontrib>Im, Kiho</creatorcontrib><title>Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) development
. However, for a reliable quantitative analysis of cortical volume and sulcal folding, accurate and automated segmentation of the CP is crucial. In this study, we propose a fully convolutional neural network for the automatic segmentation of the CP. We developed a novel hybrid loss function to improve the segmentation accuracy and adopted multi-view (axial, coronal, and sagittal) aggregation with a test-time augmentation method to reduce errors using three-dimensional (3D) information and multiple predictions. We evaluated our proposed method using the ten-fold cross-validation of 52 fetal brain MR images (22.9-31.4 weeks of gestation). The proposed method obtained Dice coefficients of 0.907 ± 0.027 and 0.906 ± 0.031 as well as a mean surface distance error of 0.182 ± 0.058 mm and 0.185 ± 0.069 mm for the left and right, respectively. In addition, the left and right CP volumes, surface area, and global mean curvature generated by automatic segmentation showed a high correlation with the values generated by manual segmentation (
> 0.941). We also demonstrated that the proposed hybrid loss function and the combination of multi-view aggregation and test-time augmentation significantly improved the CP segmentation accuracy. Our proposed segmentation method will be useful for the automatic and reliable quantification of the cortical structure in the fetal brain.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brain</subject><subject>cortical plate</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>fetal brain</subject><subject>Fetuses</subject><subject>Gestation</subject><subject>hybrid loss</subject><subject>Magnetic resonance imaging</subject><subject>Methods</subject><subject>MRI</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neuroscience</subject><subject>Registration</subject><subject>Segmentation</subject><subject>Ultrasonic imaging</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk9vEzEQxS0EoqXwAbiglbhwSer_670gVRGBSi1FggpuluOd3To469T2FvXb401KRHvyaPzmpzejh9BbgueMqea0G9yQ5hRTPBcNkYo9Q8dESjrjgv16fqi5OkKvUlpjLKni9CU6YoxxRpU8Ru0SsvHVIsTsbCm-eZOh-g79BoZssgtDdZ3c0FfL0fv7ohvugh-nfhF_hfwnxN-p-unyTXU5-uy2HibGANVZ30fod4jX6EVnfII3D-8Jul5--rH4Mru4-ny-OLuYWd6wPKPUcmiNVbhubdsVh7UCA0DJikpOKDGKN5ZRQZRhjRTMNhJ3xFhhagIdsBN0vue2waz1NrqNifc6GKd3jRB7baY9PehOriS1AgSmLZeiNdAAppzYThq64nVhfdyztuNqA60t54jGP4I-_hncje7Dna5rprjCBfDhARDD7Qgp641LFvx0nDAmTXlNBBOkoUX6_ol0HcZYLjyppCS4VnRyRPYqG0NKEbqDGYL1lAe9y4Oe8qD3eSgz7_7f4jDxLwDsLzTAs70</recordid><startdate>20201202</startdate><enddate>20201202</enddate><creator>Hong, Jinwoo</creator><creator>Yun, Hyuk Jin</creator><creator>Park, Gilsoon</creator><creator>Kim, Seonggyu</creator><creator>Laurentys, Cynthia T</creator><creator>Siqueira, Leticia C</creator><creator>Tarui, Tomo</creator><creator>Rollins, Caitlin K</creator><creator>Ortinau, Cynthia M</creator><creator>Grant, P Ellen</creator><creator>Lee, Jong-Min</creator><creator>Im, Kiho</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20201202</creationdate><title>Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation</title><author>Hong, Jinwoo ; Yun, Hyuk Jin ; Park, Gilsoon ; Kim, Seonggyu ; Laurentys, Cynthia T ; Siqueira, Leticia C ; Tarui, Tomo ; Rollins, Caitlin K ; Ortinau, Cynthia M ; Grant, P Ellen ; Lee, Jong-Min ; Im, Kiho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brain</topic><topic>cortical plate</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>fetal brain</topic><topic>Fetuses</topic><topic>Gestation</topic><topic>hybrid loss</topic><topic>Magnetic resonance imaging</topic><topic>Methods</topic><topic>MRI</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neuroscience</topic><topic>Registration</topic><topic>Segmentation</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Jinwoo</creatorcontrib><creatorcontrib>Yun, Hyuk Jin</creatorcontrib><creatorcontrib>Park, Gilsoon</creatorcontrib><creatorcontrib>Kim, Seonggyu</creatorcontrib><creatorcontrib>Laurentys, Cynthia T</creatorcontrib><creatorcontrib>Siqueira, Leticia C</creatorcontrib><creatorcontrib>Tarui, Tomo</creatorcontrib><creatorcontrib>Rollins, Caitlin K</creatorcontrib><creatorcontrib>Ortinau, Cynthia M</creatorcontrib><creatorcontrib>Grant, P Ellen</creatorcontrib><creatorcontrib>Lee, Jong-Min</creatorcontrib><creatorcontrib>Im, Kiho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Jinwoo</au><au>Yun, Hyuk Jin</au><au>Park, Gilsoon</au><au>Kim, Seonggyu</au><au>Laurentys, Cynthia T</au><au>Siqueira, Leticia C</au><au>Tarui, Tomo</au><au>Rollins, Caitlin K</au><au>Ortinau, Cynthia M</au><au>Grant, P Ellen</au><au>Lee, Jong-Min</au><au>Im, Kiho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2020-12-02</date><risdate>2020</risdate><volume>14</volume><spage>591683</spage><epage>591683</epage><pages>591683-591683</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) development
. However, for a reliable quantitative analysis of cortical volume and sulcal folding, accurate and automated segmentation of the CP is crucial. In this study, we propose a fully convolutional neural network for the automatic segmentation of the CP. We developed a novel hybrid loss function to improve the segmentation accuracy and adopted multi-view (axial, coronal, and sagittal) aggregation with a test-time augmentation method to reduce errors using three-dimensional (3D) information and multiple predictions. We evaluated our proposed method using the ten-fold cross-validation of 52 fetal brain MR images (22.9-31.4 weeks of gestation). The proposed method obtained Dice coefficients of 0.907 ± 0.027 and 0.906 ± 0.031 as well as a mean surface distance error of 0.182 ± 0.058 mm and 0.185 ± 0.069 mm for the left and right, respectively. In addition, the left and right CP volumes, surface area, and global mean curvature generated by automatic segmentation showed a high correlation with the values generated by manual segmentation (
> 0.941). We also demonstrated that the proposed hybrid loss function and the combination of multi-view aggregation and test-time augmentation significantly improved the CP segmentation accuracy. Our proposed segmentation method will be useful for the automatic and reliable quantification of the cortical structure in the fetal brain.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>33343286</pmid><doi>10.3389/fnins.2020.591683</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-4548 |
ispartof | Frontiers in neuroscience, 2020-12, Vol.14, p.591683-591683 |
issn | 1662-4548 1662-453X 1662-453X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f6b62c5e502d465dae9e0241cf6a2b47 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Algorithms Brain cortical plate Deep learning Diabetes fetal brain Fetuses Gestation hybrid loss Magnetic resonance imaging Methods MRI Neural networks Neuroimaging Neuroscience Registration Segmentation Ultrasonic imaging |
title | Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fetal%20Cortical%20Plate%20Segmentation%20Using%20Fully%20Convolutional%20Networks%20With%20Multiple%20Plane%20Aggregation&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Hong,%20Jinwoo&rft.date=2020-12-02&rft.volume=14&rft.spage=591683&rft.epage=591683&rft.pages=591683-591683&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2020.591683&rft_dat=%3Cproquest_doaj_%3E2466107827%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2466107827&rft_id=info:pmid/33343286&rfr_iscdi=true |