Loading…

Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation

Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) development . However, for a reliable quantitative analysis of cortical volume and sulcal folding, accurate and automated segm...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroscience 2020-12, Vol.14, p.591683-591683
Main Authors: Hong, Jinwoo, Yun, Hyuk Jin, Park, Gilsoon, Kim, Seonggyu, Laurentys, Cynthia T, Siqueira, Leticia C, Tarui, Tomo, Rollins, Caitlin K, Ortinau, Cynthia M, Grant, P Ellen, Lee, Jong-Min, Im, Kiho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3
cites cdi_FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3
container_end_page 591683
container_issue
container_start_page 591683
container_title Frontiers in neuroscience
container_volume 14
creator Hong, Jinwoo
Yun, Hyuk Jin
Park, Gilsoon
Kim, Seonggyu
Laurentys, Cynthia T
Siqueira, Leticia C
Tarui, Tomo
Rollins, Caitlin K
Ortinau, Cynthia M
Grant, P Ellen
Lee, Jong-Min
Im, Kiho
description Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) development . However, for a reliable quantitative analysis of cortical volume and sulcal folding, accurate and automated segmentation of the CP is crucial. In this study, we propose a fully convolutional neural network for the automatic segmentation of the CP. We developed a novel hybrid loss function to improve the segmentation accuracy and adopted multi-view (axial, coronal, and sagittal) aggregation with a test-time augmentation method to reduce errors using three-dimensional (3D) information and multiple predictions. We evaluated our proposed method using the ten-fold cross-validation of 52 fetal brain MR images (22.9-31.4 weeks of gestation). The proposed method obtained Dice coefficients of 0.907 ± 0.027 and 0.906 ± 0.031 as well as a mean surface distance error of 0.182 ± 0.058 mm and 0.185 ± 0.069 mm for the left and right, respectively. In addition, the left and right CP volumes, surface area, and global mean curvature generated by automatic segmentation showed a high correlation with the values generated by manual segmentation ( > 0.941). We also demonstrated that the proposed hybrid loss function and the combination of multi-view aggregation and test-time augmentation significantly improved the CP segmentation accuracy. Our proposed segmentation method will be useful for the automatic and reliable quantification of the cortical structure in the fetal brain.
doi_str_mv 10.3389/fnins.2020.591683
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f6b62c5e502d465dae9e0241cf6a2b47</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f6b62c5e502d465dae9e0241cf6a2b47</doaj_id><sourcerecordid>2466107827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3</originalsourceid><addsrcrecordid>eNpdkk9vEzEQxS0EoqXwAbiglbhwSer_670gVRGBSi1FggpuluOd3To469T2FvXb401KRHvyaPzmpzejh9BbgueMqea0G9yQ5hRTPBcNkYo9Q8dESjrjgv16fqi5OkKvUlpjLKni9CU6YoxxRpU8Ru0SsvHVIsTsbCm-eZOh-g79BoZssgtDdZ3c0FfL0fv7ohvugh-nfhF_hfwnxN-p-unyTXU5-uy2HibGANVZ30fod4jX6EVnfII3D-8Jul5--rH4Mru4-ny-OLuYWd6wPKPUcmiNVbhubdsVh7UCA0DJikpOKDGKN5ZRQZRhjRTMNhJ3xFhhagIdsBN0vue2waz1NrqNifc6GKd3jRB7baY9PehOriS1AgSmLZeiNdAAppzYThq64nVhfdyztuNqA60t54jGP4I-_hncje7Dna5rprjCBfDhARDD7Qgp641LFvx0nDAmTXlNBBOkoUX6_ol0HcZYLjyppCS4VnRyRPYqG0NKEbqDGYL1lAe9y4Oe8qD3eSgz7_7f4jDxLwDsLzTAs70</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466107827</pqid></control><display><type>article</type><title>Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Hong, Jinwoo ; Yun, Hyuk Jin ; Park, Gilsoon ; Kim, Seonggyu ; Laurentys, Cynthia T ; Siqueira, Leticia C ; Tarui, Tomo ; Rollins, Caitlin K ; Ortinau, Cynthia M ; Grant, P Ellen ; Lee, Jong-Min ; Im, Kiho</creator><creatorcontrib>Hong, Jinwoo ; Yun, Hyuk Jin ; Park, Gilsoon ; Kim, Seonggyu ; Laurentys, Cynthia T ; Siqueira, Leticia C ; Tarui, Tomo ; Rollins, Caitlin K ; Ortinau, Cynthia M ; Grant, P Ellen ; Lee, Jong-Min ; Im, Kiho</creatorcontrib><description>Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) development . However, for a reliable quantitative analysis of cortical volume and sulcal folding, accurate and automated segmentation of the CP is crucial. In this study, we propose a fully convolutional neural network for the automatic segmentation of the CP. We developed a novel hybrid loss function to improve the segmentation accuracy and adopted multi-view (axial, coronal, and sagittal) aggregation with a test-time augmentation method to reduce errors using three-dimensional (3D) information and multiple predictions. We evaluated our proposed method using the ten-fold cross-validation of 52 fetal brain MR images (22.9-31.4 weeks of gestation). The proposed method obtained Dice coefficients of 0.907 ± 0.027 and 0.906 ± 0.031 as well as a mean surface distance error of 0.182 ± 0.058 mm and 0.185 ± 0.069 mm for the left and right, respectively. In addition, the left and right CP volumes, surface area, and global mean curvature generated by automatic segmentation showed a high correlation with the values generated by manual segmentation ( &gt; 0.941). We also demonstrated that the proposed hybrid loss function and the combination of multi-view aggregation and test-time augmentation significantly improved the CP segmentation accuracy. Our proposed segmentation method will be useful for the automatic and reliable quantification of the cortical structure in the fetal brain.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2020.591683</identifier><identifier>PMID: 33343286</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Accuracy ; Algorithms ; Brain ; cortical plate ; Deep learning ; Diabetes ; fetal brain ; Fetuses ; Gestation ; hybrid loss ; Magnetic resonance imaging ; Methods ; MRI ; Neural networks ; Neuroimaging ; Neuroscience ; Registration ; Segmentation ; Ultrasonic imaging</subject><ispartof>Frontiers in neuroscience, 2020-12, Vol.14, p.591683-591683</ispartof><rights>Copyright © 2020 Hong, Yun, Park, Kim, Laurentys, Siqueira, Tarui, Rollins, Ortinau, Grant, Lee and Im.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2020 Hong, Yun, Park, Kim, Laurentys, Siqueira, Tarui, Rollins, Ortinau, Grant, Lee and Im. 2020 Hong, Yun, Park, Kim, Laurentys, Siqueira, Tarui, Rollins, Ortinau, Grant, Lee and Im</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3</citedby><cites>FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2466107827/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2466107827?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33343286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Jinwoo</creatorcontrib><creatorcontrib>Yun, Hyuk Jin</creatorcontrib><creatorcontrib>Park, Gilsoon</creatorcontrib><creatorcontrib>Kim, Seonggyu</creatorcontrib><creatorcontrib>Laurentys, Cynthia T</creatorcontrib><creatorcontrib>Siqueira, Leticia C</creatorcontrib><creatorcontrib>Tarui, Tomo</creatorcontrib><creatorcontrib>Rollins, Caitlin K</creatorcontrib><creatorcontrib>Ortinau, Cynthia M</creatorcontrib><creatorcontrib>Grant, P Ellen</creatorcontrib><creatorcontrib>Lee, Jong-Min</creatorcontrib><creatorcontrib>Im, Kiho</creatorcontrib><title>Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) development . However, for a reliable quantitative analysis of cortical volume and sulcal folding, accurate and automated segmentation of the CP is crucial. In this study, we propose a fully convolutional neural network for the automatic segmentation of the CP. We developed a novel hybrid loss function to improve the segmentation accuracy and adopted multi-view (axial, coronal, and sagittal) aggregation with a test-time augmentation method to reduce errors using three-dimensional (3D) information and multiple predictions. We evaluated our proposed method using the ten-fold cross-validation of 52 fetal brain MR images (22.9-31.4 weeks of gestation). The proposed method obtained Dice coefficients of 0.907 ± 0.027 and 0.906 ± 0.031 as well as a mean surface distance error of 0.182 ± 0.058 mm and 0.185 ± 0.069 mm for the left and right, respectively. In addition, the left and right CP volumes, surface area, and global mean curvature generated by automatic segmentation showed a high correlation with the values generated by manual segmentation ( &gt; 0.941). We also demonstrated that the proposed hybrid loss function and the combination of multi-view aggregation and test-time augmentation significantly improved the CP segmentation accuracy. Our proposed segmentation method will be useful for the automatic and reliable quantification of the cortical structure in the fetal brain.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brain</subject><subject>cortical plate</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>fetal brain</subject><subject>Fetuses</subject><subject>Gestation</subject><subject>hybrid loss</subject><subject>Magnetic resonance imaging</subject><subject>Methods</subject><subject>MRI</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neuroscience</subject><subject>Registration</subject><subject>Segmentation</subject><subject>Ultrasonic imaging</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk9vEzEQxS0EoqXwAbiglbhwSer_670gVRGBSi1FggpuluOd3To469T2FvXb401KRHvyaPzmpzejh9BbgueMqea0G9yQ5hRTPBcNkYo9Q8dESjrjgv16fqi5OkKvUlpjLKni9CU6YoxxRpU8Ru0SsvHVIsTsbCm-eZOh-g79BoZssgtDdZ3c0FfL0fv7ohvugh-nfhF_hfwnxN-p-unyTXU5-uy2HibGANVZ30fod4jX6EVnfII3D-8Jul5--rH4Mru4-ny-OLuYWd6wPKPUcmiNVbhubdsVh7UCA0DJikpOKDGKN5ZRQZRhjRTMNhJ3xFhhagIdsBN0vue2waz1NrqNifc6GKd3jRB7baY9PehOriS1AgSmLZeiNdAAppzYThq64nVhfdyztuNqA60t54jGP4I-_hncje7Dna5rprjCBfDhARDD7Qgp641LFvx0nDAmTXlNBBOkoUX6_ol0HcZYLjyppCS4VnRyRPYqG0NKEbqDGYL1lAe9y4Oe8qD3eSgz7_7f4jDxLwDsLzTAs70</recordid><startdate>20201202</startdate><enddate>20201202</enddate><creator>Hong, Jinwoo</creator><creator>Yun, Hyuk Jin</creator><creator>Park, Gilsoon</creator><creator>Kim, Seonggyu</creator><creator>Laurentys, Cynthia T</creator><creator>Siqueira, Leticia C</creator><creator>Tarui, Tomo</creator><creator>Rollins, Caitlin K</creator><creator>Ortinau, Cynthia M</creator><creator>Grant, P Ellen</creator><creator>Lee, Jong-Min</creator><creator>Im, Kiho</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20201202</creationdate><title>Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation</title><author>Hong, Jinwoo ; Yun, Hyuk Jin ; Park, Gilsoon ; Kim, Seonggyu ; Laurentys, Cynthia T ; Siqueira, Leticia C ; Tarui, Tomo ; Rollins, Caitlin K ; Ortinau, Cynthia M ; Grant, P Ellen ; Lee, Jong-Min ; Im, Kiho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brain</topic><topic>cortical plate</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>fetal brain</topic><topic>Fetuses</topic><topic>Gestation</topic><topic>hybrid loss</topic><topic>Magnetic resonance imaging</topic><topic>Methods</topic><topic>MRI</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neuroscience</topic><topic>Registration</topic><topic>Segmentation</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Jinwoo</creatorcontrib><creatorcontrib>Yun, Hyuk Jin</creatorcontrib><creatorcontrib>Park, Gilsoon</creatorcontrib><creatorcontrib>Kim, Seonggyu</creatorcontrib><creatorcontrib>Laurentys, Cynthia T</creatorcontrib><creatorcontrib>Siqueira, Leticia C</creatorcontrib><creatorcontrib>Tarui, Tomo</creatorcontrib><creatorcontrib>Rollins, Caitlin K</creatorcontrib><creatorcontrib>Ortinau, Cynthia M</creatorcontrib><creatorcontrib>Grant, P Ellen</creatorcontrib><creatorcontrib>Lee, Jong-Min</creatorcontrib><creatorcontrib>Im, Kiho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Jinwoo</au><au>Yun, Hyuk Jin</au><au>Park, Gilsoon</au><au>Kim, Seonggyu</au><au>Laurentys, Cynthia T</au><au>Siqueira, Leticia C</au><au>Tarui, Tomo</au><au>Rollins, Caitlin K</au><au>Ortinau, Cynthia M</au><au>Grant, P Ellen</au><au>Lee, Jong-Min</au><au>Im, Kiho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2020-12-02</date><risdate>2020</risdate><volume>14</volume><spage>591683</spage><epage>591683</epage><pages>591683-591683</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) development . However, for a reliable quantitative analysis of cortical volume and sulcal folding, accurate and automated segmentation of the CP is crucial. In this study, we propose a fully convolutional neural network for the automatic segmentation of the CP. We developed a novel hybrid loss function to improve the segmentation accuracy and adopted multi-view (axial, coronal, and sagittal) aggregation with a test-time augmentation method to reduce errors using three-dimensional (3D) information and multiple predictions. We evaluated our proposed method using the ten-fold cross-validation of 52 fetal brain MR images (22.9-31.4 weeks of gestation). The proposed method obtained Dice coefficients of 0.907 ± 0.027 and 0.906 ± 0.031 as well as a mean surface distance error of 0.182 ± 0.058 mm and 0.185 ± 0.069 mm for the left and right, respectively. In addition, the left and right CP volumes, surface area, and global mean curvature generated by automatic segmentation showed a high correlation with the values generated by manual segmentation ( &gt; 0.941). We also demonstrated that the proposed hybrid loss function and the combination of multi-view aggregation and test-time augmentation significantly improved the CP segmentation accuracy. Our proposed segmentation method will be useful for the automatic and reliable quantification of the cortical structure in the fetal brain.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>33343286</pmid><doi>10.3389/fnins.2020.591683</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-4548
ispartof Frontiers in neuroscience, 2020-12, Vol.14, p.591683-591683
issn 1662-4548
1662-453X
1662-453X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f6b62c5e502d465dae9e0241cf6a2b47
source Publicly Available Content Database; PubMed Central
subjects Accuracy
Algorithms
Brain
cortical plate
Deep learning
Diabetes
fetal brain
Fetuses
Gestation
hybrid loss
Magnetic resonance imaging
Methods
MRI
Neural networks
Neuroimaging
Neuroscience
Registration
Segmentation
Ultrasonic imaging
title Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fetal%20Cortical%20Plate%20Segmentation%20Using%20Fully%20Convolutional%20Networks%20With%20Multiple%20Plane%20Aggregation&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Hong,%20Jinwoo&rft.date=2020-12-02&rft.volume=14&rft.spage=591683&rft.epage=591683&rft.pages=591683-591683&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2020.591683&rft_dat=%3Cproquest_doaj_%3E2466107827%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-22c4edac807dcdf43278eaee21b264121a849c32518a39653c960f1ac5a71efe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2466107827&rft_id=info:pmid/33343286&rfr_iscdi=true