Loading…

M-SRPCNN: A Fully Convolutional Neural Network Approach for Handling Super Resolution Reconstruction on Monthly Energy Consumption Environments

We propose M-SRPCNN, a fully convolutional generative deep neural network to recover missing historical hourly data from a sensor based on the historic monthly energy consumption. The network performs a reconstruction of the load profile while keeping the overall monthly consumption, which makes it...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-08, Vol.14 (16), p.4765
Main Authors: de-Paz-Centeno, Iván, García-Ordás, María Teresa, García-Olalla, Oscar, Arenas, Javier, Alaiz-Moretón, Héctor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-2cf27713a64f97497fa8bb22fb04b70fd80eadabc507cd7b5093175711a2dda03
cites cdi_FETCH-LOGICAL-c402t-2cf27713a64f97497fa8bb22fb04b70fd80eadabc507cd7b5093175711a2dda03
container_end_page
container_issue 16
container_start_page 4765
container_title Energies (Basel)
container_volume 14
creator de-Paz-Centeno, Iván
García-Ordás, María Teresa
García-Olalla, Oscar
Arenas, Javier
Alaiz-Moretón, Héctor
description We propose M-SRPCNN, a fully convolutional generative deep neural network to recover missing historical hourly data from a sensor based on the historic monthly energy consumption. The network performs a reconstruction of the load profile while keeping the overall monthly consumption, which makes it suitable to effectively replace energy apportioning systems. Experiments demonstrate that M-SRPCNN can effectively reconstruct load curves from single month overall values, outperforming traditional apportioning systems.
doi_str_mv 10.3390/en14164765
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f6cd732e3295449abe17fa2a0994a44c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f6cd732e3295449abe17fa2a0994a44c</doaj_id><sourcerecordid>2565221743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2cf27713a64f97497fa8bb22fb04b70fd80eadabc507cd7b5093175711a2dda03</originalsourceid><addsrcrecordid>eNpNkdtKxDAQhosoKOqNTxDwTqjm1MZ4tyzrAXQVD9dhmiZr125Sk1bxKXxlY1fUMDCHzHw_zGTZAcHHjEl8YhzhpOSiLDayHSJlmRMs2Oa_eDvbj3GJ02OMMMZ2ss-b_OH-bjqfn6EJOh_a9gNNvXvz7dA33kGL5mYIo-vffXhBk64LHvQzsj6gS3B127gFehg6E9C9iT9zKdTexT4MekyT3XjXPyf6zJmwGEXisOrG35l7a4J3K-P6uJdtWWij2f_xu9nT-exxeplf315cTSfXueaY9jnVlgpBGJTcSsGlsHBaVZTaCvNKYFufYgM1VLrAQteiKrBkRBSCEKB1DZjtZldrbu1hqbrQrCB8KA-NGgs-LBSEvtGtUbZMBEYNo7LgXEJlSJKjgKXkwLlOrMM1K63mdTCxV0s_hLS8qGhRFpQSwVnqOlp36eBjDMb-qhKsvu-n_u7HvgAwUo7V</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565221743</pqid></control><display><type>article</type><title>M-SRPCNN: A Fully Convolutional Neural Network Approach for Handling Super Resolution Reconstruction on Monthly Energy Consumption Environments</title><source>ProQuest Publicly Available Content database</source><creator>de-Paz-Centeno, Iván ; García-Ordás, María Teresa ; García-Olalla, Oscar ; Arenas, Javier ; Alaiz-Moretón, Héctor</creator><creatorcontrib>de-Paz-Centeno, Iván ; García-Ordás, María Teresa ; García-Olalla, Oscar ; Arenas, Javier ; Alaiz-Moretón, Héctor</creatorcontrib><description>We propose M-SRPCNN, a fully convolutional generative deep neural network to recover missing historical hourly data from a sensor based on the historic monthly energy consumption. The network performs a reconstruction of the load profile while keeping the overall monthly consumption, which makes it suitable to effectively replace energy apportioning systems. Experiments demonstrate that M-SRPCNN can effectively reconstruct load curves from single month overall values, outperforming traditional apportioning systems.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14164765</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>convolutional neural network ; data interpolation ; deep-learning ; Energy consumption ; Internet of Things ; Neural networks ; Reconstruction ; super resolution of energy ; super resolution perception ; System effectiveness ; Time series</subject><ispartof>Energies (Basel), 2021-08, Vol.14 (16), p.4765</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2cf27713a64f97497fa8bb22fb04b70fd80eadabc507cd7b5093175711a2dda03</citedby><cites>FETCH-LOGICAL-c402t-2cf27713a64f97497fa8bb22fb04b70fd80eadabc507cd7b5093175711a2dda03</cites><orcidid>0000-0002-3796-3949 ; 0000-0001-7540-2985 ; 0000-0002-9004-4685 ; 0000-0001-6572-1261 ; 0000-0001-6036-1674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2565221743/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2565221743?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>de-Paz-Centeno, Iván</creatorcontrib><creatorcontrib>García-Ordás, María Teresa</creatorcontrib><creatorcontrib>García-Olalla, Oscar</creatorcontrib><creatorcontrib>Arenas, Javier</creatorcontrib><creatorcontrib>Alaiz-Moretón, Héctor</creatorcontrib><title>M-SRPCNN: A Fully Convolutional Neural Network Approach for Handling Super Resolution Reconstruction on Monthly Energy Consumption Environments</title><title>Energies (Basel)</title><description>We propose M-SRPCNN, a fully convolutional generative deep neural network to recover missing historical hourly data from a sensor based on the historic monthly energy consumption. The network performs a reconstruction of the load profile while keeping the overall monthly consumption, which makes it suitable to effectively replace energy apportioning systems. Experiments demonstrate that M-SRPCNN can effectively reconstruct load curves from single month overall values, outperforming traditional apportioning systems.</description><subject>convolutional neural network</subject><subject>data interpolation</subject><subject>deep-learning</subject><subject>Energy consumption</subject><subject>Internet of Things</subject><subject>Neural networks</subject><subject>Reconstruction</subject><subject>super resolution of energy</subject><subject>super resolution perception</subject><subject>System effectiveness</subject><subject>Time series</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkdtKxDAQhosoKOqNTxDwTqjm1MZ4tyzrAXQVD9dhmiZr125Sk1bxKXxlY1fUMDCHzHw_zGTZAcHHjEl8YhzhpOSiLDayHSJlmRMs2Oa_eDvbj3GJ02OMMMZ2ss-b_OH-bjqfn6EJOh_a9gNNvXvz7dA33kGL5mYIo-vffXhBk64LHvQzsj6gS3B127gFehg6E9C9iT9zKdTexT4MekyT3XjXPyf6zJmwGEXisOrG35l7a4J3K-P6uJdtWWij2f_xu9nT-exxeplf315cTSfXueaY9jnVlgpBGJTcSsGlsHBaVZTaCvNKYFufYgM1VLrAQteiKrBkRBSCEKB1DZjtZldrbu1hqbrQrCB8KA-NGgs-LBSEvtGtUbZMBEYNo7LgXEJlSJKjgKXkwLlOrMM1K63mdTCxV0s_hLS8qGhRFpQSwVnqOlp36eBjDMb-qhKsvu-n_u7HvgAwUo7V</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>de-Paz-Centeno, Iván</creator><creator>García-Ordás, María Teresa</creator><creator>García-Olalla, Oscar</creator><creator>Arenas, Javier</creator><creator>Alaiz-Moretón, Héctor</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3796-3949</orcidid><orcidid>https://orcid.org/0000-0001-7540-2985</orcidid><orcidid>https://orcid.org/0000-0002-9004-4685</orcidid><orcidid>https://orcid.org/0000-0001-6572-1261</orcidid><orcidid>https://orcid.org/0000-0001-6036-1674</orcidid></search><sort><creationdate>20210801</creationdate><title>M-SRPCNN: A Fully Convolutional Neural Network Approach for Handling Super Resolution Reconstruction on Monthly Energy Consumption Environments</title><author>de-Paz-Centeno, Iván ; García-Ordás, María Teresa ; García-Olalla, Oscar ; Arenas, Javier ; Alaiz-Moretón, Héctor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2cf27713a64f97497fa8bb22fb04b70fd80eadabc507cd7b5093175711a2dda03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>convolutional neural network</topic><topic>data interpolation</topic><topic>deep-learning</topic><topic>Energy consumption</topic><topic>Internet of Things</topic><topic>Neural networks</topic><topic>Reconstruction</topic><topic>super resolution of energy</topic><topic>super resolution perception</topic><topic>System effectiveness</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de-Paz-Centeno, Iván</creatorcontrib><creatorcontrib>García-Ordás, María Teresa</creatorcontrib><creatorcontrib>García-Olalla, Oscar</creatorcontrib><creatorcontrib>Arenas, Javier</creatorcontrib><creatorcontrib>Alaiz-Moretón, Héctor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de-Paz-Centeno, Iván</au><au>García-Ordás, María Teresa</au><au>García-Olalla, Oscar</au><au>Arenas, Javier</au><au>Alaiz-Moretón, Héctor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M-SRPCNN: A Fully Convolutional Neural Network Approach for Handling Super Resolution Reconstruction on Monthly Energy Consumption Environments</atitle><jtitle>Energies (Basel)</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>14</volume><issue>16</issue><spage>4765</spage><pages>4765-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>We propose M-SRPCNN, a fully convolutional generative deep neural network to recover missing historical hourly data from a sensor based on the historic monthly energy consumption. The network performs a reconstruction of the load profile while keeping the overall monthly consumption, which makes it suitable to effectively replace energy apportioning systems. Experiments demonstrate that M-SRPCNN can effectively reconstruct load curves from single month overall values, outperforming traditional apportioning systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en14164765</doi><orcidid>https://orcid.org/0000-0002-3796-3949</orcidid><orcidid>https://orcid.org/0000-0001-7540-2985</orcidid><orcidid>https://orcid.org/0000-0002-9004-4685</orcidid><orcidid>https://orcid.org/0000-0001-6572-1261</orcidid><orcidid>https://orcid.org/0000-0001-6036-1674</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2021-08, Vol.14 (16), p.4765
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f6cd732e3295449abe17fa2a0994a44c
source ProQuest Publicly Available Content database
subjects convolutional neural network
data interpolation
deep-learning
Energy consumption
Internet of Things
Neural networks
Reconstruction
super resolution of energy
super resolution perception
System effectiveness
Time series
title M-SRPCNN: A Fully Convolutional Neural Network Approach for Handling Super Resolution Reconstruction on Monthly Energy Consumption Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M-SRPCNN:%20A%20Fully%20Convolutional%20Neural%20Network%20Approach%20for%20Handling%20Super%20Resolution%20Reconstruction%20on%20Monthly%20Energy%20Consumption%20Environments&rft.jtitle=Energies%20(Basel)&rft.au=de-Paz-Centeno,%20Iv%C3%A1n&rft.date=2021-08-01&rft.volume=14&rft.issue=16&rft.spage=4765&rft.pages=4765-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14164765&rft_dat=%3Cproquest_doaj_%3E2565221743%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-2cf27713a64f97497fa8bb22fb04b70fd80eadabc507cd7b5093175711a2dda03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565221743&rft_id=info:pmid/&rfr_iscdi=true