Loading…

Quantification of the Lifecycle Greenhouse Gas Emissions from Nuclear Power Generation Systems

This paper statistically quantifies the lifecycle greenhouse gas (GHG) emissions from six distinct reactor-based (boiling water reactor (BWR), pressurized water reactor (PWR), light water reactor (LWR), heavy-water-moderated reactor (HWR), gas-cooled reactor (GCR), fast breeder reactor (FBR)) nuclea...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2016-11, Vol.9 (11), p.863-863
Main Authors: Kadiyala, Akhil, Kommalapati, Raghava, Huque, Ziaul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper statistically quantifies the lifecycle greenhouse gas (GHG) emissions from six distinct reactor-based (boiling water reactor (BWR), pressurized water reactor (PWR), light water reactor (LWR), heavy-water-moderated reactor (HWR), gas-cooled reactor (GCR), fast breeder reactor (FBR)) nuclear power generation systems by following a two-step approach that included (a) performing a review of the lifecycle assessment (LCA) studies on the reactor-based nuclear power generation systems; and (b) statistically evaluating the lifecycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO2e/kWh) for each of the reactor-based nuclear power generation systems to assess the role of different types of nuclear reactors in the reduction of the lifecycle GHG emissions. Additionally, this study quantified the impacts of fuel enrichment methods (centrifuge, gaseous diffusion) on GHG emissions. The mean lifecycle GHG emissions resulting from the use of BWR (sample size, N = 15), PWR (N = 21), LWR (N = 7), HWR (N = 3), GCR (N = 1), and FBR (N = 2) in nuclear power generation systems are 14.52 gCO2e/kWh, 11.87 gCO2e/kWh, 20.5 gCO2e/kWh, 28.2 gCO2e/kWh, 8.35 gCO2e/kWh, and 6.26 gCO2e/kWh, respectively. The FBR nuclear power generation systems produced the minimum lifecycle GHGs. The centrifuge enrichment method produced lower GHG emissions than the gaseous diffusion enrichment method.
ISSN:1996-1073
1996-1073
DOI:10.3390/en9110863