Loading…
Energy Expenditure Estimation for Forestry Workers Moving on Flat and Inclined Ground
Forestry workers endure highly physical workloads. Japanese forestry workers experience additional up-and-down movements due to geographical features. Fatigue is a common cause of injury. This pilot study aimed to determine an appropriate method for estimating energy expenditure while moving across...
Saved in:
Published in: | Forests 2023-05, Vol.14 (5), p.1038 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Forestry workers endure highly physical workloads. Japanese forestry workers experience additional up-and-down movements due to geographical features. Fatigue is a common cause of injury. This pilot study aimed to determine an appropriate method for estimating energy expenditure while moving across inclined ground to simulate a Japanese forest. Six participants wore a portable indirect calorimeter (V˙O2), heart rate (HR) monitor (17 g), accelerometer (20 g; vector magnitude; VM), and a global navigation satellite system (GNSS) device. They walked shouldering 20 kg of weight on flat, 15°- and 30°-slopes. The time course of HR was similar to that of V˙O2, but that of VM and the vertical movement varied from that of V˙O2. GNSS cannot correctly detect vertical movements. The HR index (HRI), indicating the ratio of activity HR to resting HR, was significantly correlated with the metabolic equivalent of the task (MET) calculated from V˙O2 (r = 0.932, p < 0.0001), which fit the previously proposed formula for METs (METs = HRI × 6 − 5). However, VM was not correlated with VM (r = 0.354, p = 0.150). We can use HRI to measure the workload of Japanese forestry workers with a small burden in the field. |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f14051038 |