Loading…

Identification of high likelihood of dementia in population-based surveys using unsupervised clustering: a longitudinal analysis

Dementia is defined as a cognitive decline that affects functional status. Longitudinal ageing surveys often lack a clinical diagnosis of dementia though measure cognition and daily function over time. We used unsupervised machine learning and longitudinal data to identify transition to probable dem...

Full description

Saved in:
Bibliographic Details
Published in:Alzheimer's research & therapy 2023-11, Vol.15 (1), p.209-209, Article 209
Main Authors: Gharbi-Meliani, Amin, Husson, François, Vandendriessche, Henri, Bayen, Eleonore, Yaffe, Kristine, Bachoud-Lévi, Anne-Catherine, Cleret de Langavant, Laurent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c531t-1d6d9d59112900e99245551bf84b109a18278942b3c86982d84077dd55e3d1bc3
cites cdi_FETCH-LOGICAL-c531t-1d6d9d59112900e99245551bf84b109a18278942b3c86982d84077dd55e3d1bc3
container_end_page 209
container_issue 1
container_start_page 209
container_title Alzheimer's research & therapy
container_volume 15
creator Gharbi-Meliani, Amin
Husson, François
Vandendriessche, Henri
Bayen, Eleonore
Yaffe, Kristine
Bachoud-Lévi, Anne-Catherine
Cleret de Langavant, Laurent
description Dementia is defined as a cognitive decline that affects functional status. Longitudinal ageing surveys often lack a clinical diagnosis of dementia though measure cognition and daily function over time. We used unsupervised machine learning and longitudinal data to identify transition to probable dementia. Multiple Factor Analysis was applied to longitudinal function and cognitive data of 15,278 baseline participants (aged 50 years and more) from the Survey of Health, Ageing, and Retirement in Europe (SHARE) (waves 1, 2 and 4-7, between 2004 and 2017). Hierarchical Clustering on Principal Components discriminated three clusters at each wave. We estimated probable or "Likely Dementia" prevalence by sex and age, and assessed whether dementia risk factors increased the risk of being assigned probable dementia status using multistate models. Next, we compared the "Likely Dementia" cluster with self-reported dementia status and replicated our findings in the English Longitudinal Study of Ageing (ELSA) cohort (waves 1-9, between 2002 and 2019, 7840 participants at baseline). Our algorithm identified a higher number of probable dementia cases compared with self-reported cases and showed good discriminative power across all waves (AUC ranged from 0.754 [0.722-0.787] to 0.830 [0.800-0.861]). "Likely Dementia" status was more prevalent in older people, displayed a 2:1 female/male ratio, and was associated with nine factors that increased risk of transition to dementia: low education, hearing loss, hypertension, drinking, smoking, depression, social isolation, physical inactivity, diabetes, and obesity. Results were replicated in ELSA cohort with good accuracy. Machine learning clustering can be used to study dementia determinants and outcomes in longitudinal population ageing surveys in which dementia clinical diagnosis is lacking.
doi_str_mv 10.1186/s13195-023-01357-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f6e937a2fd0148f68301a684f8a15513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f6e937a2fd0148f68301a684f8a15513</doaj_id><sourcerecordid>2895709646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-1d6d9d59112900e99245551bf84b109a18278942b3c86982d84077dd55e3d1bc3</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhlcIRD_gD3BAlrjQw4LHX2tzqaoKaKRIXOBsedfexMFZB3s3Um78dLxJqdpebGvmmXfGo7eq3gH-BCDF5wwUFK8xoTUGyptavajOoeGyVqDoy0fvs-oi5w3GQhDJXldnVGIKWNLz6u_CumH0ve_M6OOAYo_WfrVGwf92wa9jtHPIuu1MGeQHtIu7KRzhujXZWZSntHeHjKbshxWahjztXNr7OdWFKY8ulfgXZFCIw8qPk_WDCciU45B9flO96k3I7u39fVn9-vb15-1dvfzxfXF7s6w7TmGswQqrLFcARGHslCKMcw5tL1kLWBmQpJGKkZZ2UihJrGS4aazl3FELbUcvq8VJ10az0bvktyYddDReHwMxrbRJo--C071wijaG9BYDk72QFIMRkvXSQOlJi9b1SWs3tVtnu7KbZMIT0aeZwa_1Ku41YCElVqooXJ0U1s_q7m6Weo5hRplgQPZQ2I_33VL8M7k86q3PnQvBDC5OWROpeIOVYKKgH56hmzilsulCKUyAEiV5ociJ6lLMObn-YQLAenaWPjlLF2fpo7P0PPH7x39-KPlvJfoPSgDJ7g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902132985</pqid></control><display><type>article</type><title>Identification of high likelihood of dementia in population-based surveys using unsupervised clustering: a longitudinal analysis</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Gharbi-Meliani, Amin ; Husson, François ; Vandendriessche, Henri ; Bayen, Eleonore ; Yaffe, Kristine ; Bachoud-Lévi, Anne-Catherine ; Cleret de Langavant, Laurent</creator><creatorcontrib>Gharbi-Meliani, Amin ; Husson, François ; Vandendriessche, Henri ; Bayen, Eleonore ; Yaffe, Kristine ; Bachoud-Lévi, Anne-Catherine ; Cleret de Langavant, Laurent</creatorcontrib><description>Dementia is defined as a cognitive decline that affects functional status. Longitudinal ageing surveys often lack a clinical diagnosis of dementia though measure cognition and daily function over time. We used unsupervised machine learning and longitudinal data to identify transition to probable dementia. Multiple Factor Analysis was applied to longitudinal function and cognitive data of 15,278 baseline participants (aged 50 years and more) from the Survey of Health, Ageing, and Retirement in Europe (SHARE) (waves 1, 2 and 4-7, between 2004 and 2017). Hierarchical Clustering on Principal Components discriminated three clusters at each wave. We estimated probable or "Likely Dementia" prevalence by sex and age, and assessed whether dementia risk factors increased the risk of being assigned probable dementia status using multistate models. Next, we compared the "Likely Dementia" cluster with self-reported dementia status and replicated our findings in the English Longitudinal Study of Ageing (ELSA) cohort (waves 1-9, between 2002 and 2019, 7840 participants at baseline). Our algorithm identified a higher number of probable dementia cases compared with self-reported cases and showed good discriminative power across all waves (AUC ranged from 0.754 [0.722-0.787] to 0.830 [0.800-0.861]). "Likely Dementia" status was more prevalent in older people, displayed a 2:1 female/male ratio, and was associated with nine factors that increased risk of transition to dementia: low education, hearing loss, hypertension, drinking, smoking, depression, social isolation, physical inactivity, diabetes, and obesity. Results were replicated in ELSA cohort with good accuracy. Machine learning clustering can be used to study dementia determinants and outcomes in longitudinal population ageing surveys in which dementia clinical diagnosis is lacking.</description><identifier>ISSN: 1758-9193</identifier><identifier>EISSN: 1758-9193</identifier><identifier>DOI: 10.1186/s13195-023-01357-9</identifier><identifier>PMID: 38031083</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Age ; Aged ; Aging ; Aging - psychology ; Air pollution ; Alcohol ; Alzheimer's disease ; Blood pressure ; Body mass index ; Clustering ; Cognition ; Cognition &amp; reasoning ; Cognitive Dysfunction - diagnosis ; Dementia ; Dementia - diagnosis ; Dementia - epidemiology ; Diabetes ; Female ; Hearing loss ; Humans ; Hypertension ; Identification ; Life Sciences ; Longitudinal analysis ; Longitudinal Studies ; Machine Learning ; Male ; Methods ; Middle Aged ; Neurons and Cognition ; Population ; Population-based surveys ; Risk factors ; Self report ; Social isolation ; Statistics ; Unsupervised clustering ; Variables</subject><ispartof>Alzheimer's research &amp; therapy, 2023-11, Vol.15 (1), p.209-209, Article 209</ispartof><rights>2023. The Author(s).</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-1d6d9d59112900e99245551bf84b109a18278942b3c86982d84077dd55e3d1bc3</citedby><cites>FETCH-LOGICAL-c531t-1d6d9d59112900e99245551bf84b109a18278942b3c86982d84077dd55e3d1bc3</cites><orcidid>0000-0003-3000-2210 ; 0000-0001-9319-0031 ; 0000-0002-7271-8877 ; 0000-0002-0286-5521 ; 0000-0003-0919-3825 ; 0000-0001-7788-3321 ; 0000-0001-6551-4641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688099/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2902132985?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38031083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04346412$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gharbi-Meliani, Amin</creatorcontrib><creatorcontrib>Husson, François</creatorcontrib><creatorcontrib>Vandendriessche, Henri</creatorcontrib><creatorcontrib>Bayen, Eleonore</creatorcontrib><creatorcontrib>Yaffe, Kristine</creatorcontrib><creatorcontrib>Bachoud-Lévi, Anne-Catherine</creatorcontrib><creatorcontrib>Cleret de Langavant, Laurent</creatorcontrib><title>Identification of high likelihood of dementia in population-based surveys using unsupervised clustering: a longitudinal analysis</title><title>Alzheimer's research &amp; therapy</title><addtitle>Alzheimers Res Ther</addtitle><description>Dementia is defined as a cognitive decline that affects functional status. Longitudinal ageing surveys often lack a clinical diagnosis of dementia though measure cognition and daily function over time. We used unsupervised machine learning and longitudinal data to identify transition to probable dementia. Multiple Factor Analysis was applied to longitudinal function and cognitive data of 15,278 baseline participants (aged 50 years and more) from the Survey of Health, Ageing, and Retirement in Europe (SHARE) (waves 1, 2 and 4-7, between 2004 and 2017). Hierarchical Clustering on Principal Components discriminated three clusters at each wave. We estimated probable or "Likely Dementia" prevalence by sex and age, and assessed whether dementia risk factors increased the risk of being assigned probable dementia status using multistate models. Next, we compared the "Likely Dementia" cluster with self-reported dementia status and replicated our findings in the English Longitudinal Study of Ageing (ELSA) cohort (waves 1-9, between 2002 and 2019, 7840 participants at baseline). Our algorithm identified a higher number of probable dementia cases compared with self-reported cases and showed good discriminative power across all waves (AUC ranged from 0.754 [0.722-0.787] to 0.830 [0.800-0.861]). "Likely Dementia" status was more prevalent in older people, displayed a 2:1 female/male ratio, and was associated with nine factors that increased risk of transition to dementia: low education, hearing loss, hypertension, drinking, smoking, depression, social isolation, physical inactivity, diabetes, and obesity. Results were replicated in ELSA cohort with good accuracy. Machine learning clustering can be used to study dementia determinants and outcomes in longitudinal population ageing surveys in which dementia clinical diagnosis is lacking.</description><subject>Age</subject><subject>Aged</subject><subject>Aging</subject><subject>Aging - psychology</subject><subject>Air pollution</subject><subject>Alcohol</subject><subject>Alzheimer's disease</subject><subject>Blood pressure</subject><subject>Body mass index</subject><subject>Clustering</subject><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive Dysfunction - diagnosis</subject><subject>Dementia</subject><subject>Dementia - diagnosis</subject><subject>Dementia - epidemiology</subject><subject>Diabetes</subject><subject>Female</subject><subject>Hearing loss</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Identification</subject><subject>Life Sciences</subject><subject>Longitudinal analysis</subject><subject>Longitudinal Studies</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Neurons and Cognition</subject><subject>Population</subject><subject>Population-based surveys</subject><subject>Risk factors</subject><subject>Self report</subject><subject>Social isolation</subject><subject>Statistics</subject><subject>Unsupervised clustering</subject><subject>Variables</subject><issn>1758-9193</issn><issn>1758-9193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhlcIRD_gD3BAlrjQw4LHX2tzqaoKaKRIXOBsedfexMFZB3s3Um78dLxJqdpebGvmmXfGo7eq3gH-BCDF5wwUFK8xoTUGyptavajOoeGyVqDoy0fvs-oi5w3GQhDJXldnVGIKWNLz6u_CumH0ve_M6OOAYo_WfrVGwf92wa9jtHPIuu1MGeQHtIu7KRzhujXZWZSntHeHjKbshxWahjztXNr7OdWFKY8ulfgXZFCIw8qPk_WDCciU45B9flO96k3I7u39fVn9-vb15-1dvfzxfXF7s6w7TmGswQqrLFcARGHslCKMcw5tL1kLWBmQpJGKkZZ2UihJrGS4aazl3FELbUcvq8VJ10az0bvktyYddDReHwMxrbRJo--C071wijaG9BYDk72QFIMRkvXSQOlJi9b1SWs3tVtnu7KbZMIT0aeZwa_1Ku41YCElVqooXJ0U1s_q7m6Weo5hRplgQPZQ2I_33VL8M7k86q3PnQvBDC5OWROpeIOVYKKgH56hmzilsulCKUyAEiV5ociJ6lLMObn-YQLAenaWPjlLF2fpo7P0PPH7x39-KPlvJfoPSgDJ7g</recordid><startdate>20231129</startdate><enddate>20231129</enddate><creator>Gharbi-Meliani, Amin</creator><creator>Husson, François</creator><creator>Vandendriessche, Henri</creator><creator>Bayen, Eleonore</creator><creator>Yaffe, Kristine</creator><creator>Bachoud-Lévi, Anne-Catherine</creator><creator>Cleret de Langavant, Laurent</creator><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3000-2210</orcidid><orcidid>https://orcid.org/0000-0001-9319-0031</orcidid><orcidid>https://orcid.org/0000-0002-7271-8877</orcidid><orcidid>https://orcid.org/0000-0002-0286-5521</orcidid><orcidid>https://orcid.org/0000-0003-0919-3825</orcidid><orcidid>https://orcid.org/0000-0001-7788-3321</orcidid><orcidid>https://orcid.org/0000-0001-6551-4641</orcidid></search><sort><creationdate>20231129</creationdate><title>Identification of high likelihood of dementia in population-based surveys using unsupervised clustering: a longitudinal analysis</title><author>Gharbi-Meliani, Amin ; Husson, François ; Vandendriessche, Henri ; Bayen, Eleonore ; Yaffe, Kristine ; Bachoud-Lévi, Anne-Catherine ; Cleret de Langavant, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-1d6d9d59112900e99245551bf84b109a18278942b3c86982d84077dd55e3d1bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Age</topic><topic>Aged</topic><topic>Aging</topic><topic>Aging - psychology</topic><topic>Air pollution</topic><topic>Alcohol</topic><topic>Alzheimer's disease</topic><topic>Blood pressure</topic><topic>Body mass index</topic><topic>Clustering</topic><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive Dysfunction - diagnosis</topic><topic>Dementia</topic><topic>Dementia - diagnosis</topic><topic>Dementia - epidemiology</topic><topic>Diabetes</topic><topic>Female</topic><topic>Hearing loss</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Identification</topic><topic>Life Sciences</topic><topic>Longitudinal analysis</topic><topic>Longitudinal Studies</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Neurons and Cognition</topic><topic>Population</topic><topic>Population-based surveys</topic><topic>Risk factors</topic><topic>Self report</topic><topic>Social isolation</topic><topic>Statistics</topic><topic>Unsupervised clustering</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gharbi-Meliani, Amin</creatorcontrib><creatorcontrib>Husson, François</creatorcontrib><creatorcontrib>Vandendriessche, Henri</creatorcontrib><creatorcontrib>Bayen, Eleonore</creatorcontrib><creatorcontrib>Yaffe, Kristine</creatorcontrib><creatorcontrib>Bachoud-Lévi, Anne-Catherine</creatorcontrib><creatorcontrib>Cleret de Langavant, Laurent</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Alzheimer's research &amp; therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gharbi-Meliani, Amin</au><au>Husson, François</au><au>Vandendriessche, Henri</au><au>Bayen, Eleonore</au><au>Yaffe, Kristine</au><au>Bachoud-Lévi, Anne-Catherine</au><au>Cleret de Langavant, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of high likelihood of dementia in population-based surveys using unsupervised clustering: a longitudinal analysis</atitle><jtitle>Alzheimer's research &amp; therapy</jtitle><addtitle>Alzheimers Res Ther</addtitle><date>2023-11-29</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>209</spage><epage>209</epage><pages>209-209</pages><artnum>209</artnum><issn>1758-9193</issn><eissn>1758-9193</eissn><abstract>Dementia is defined as a cognitive decline that affects functional status. Longitudinal ageing surveys often lack a clinical diagnosis of dementia though measure cognition and daily function over time. We used unsupervised machine learning and longitudinal data to identify transition to probable dementia. Multiple Factor Analysis was applied to longitudinal function and cognitive data of 15,278 baseline participants (aged 50 years and more) from the Survey of Health, Ageing, and Retirement in Europe (SHARE) (waves 1, 2 and 4-7, between 2004 and 2017). Hierarchical Clustering on Principal Components discriminated three clusters at each wave. We estimated probable or "Likely Dementia" prevalence by sex and age, and assessed whether dementia risk factors increased the risk of being assigned probable dementia status using multistate models. Next, we compared the "Likely Dementia" cluster with self-reported dementia status and replicated our findings in the English Longitudinal Study of Ageing (ELSA) cohort (waves 1-9, between 2002 and 2019, 7840 participants at baseline). Our algorithm identified a higher number of probable dementia cases compared with self-reported cases and showed good discriminative power across all waves (AUC ranged from 0.754 [0.722-0.787] to 0.830 [0.800-0.861]). "Likely Dementia" status was more prevalent in older people, displayed a 2:1 female/male ratio, and was associated with nine factors that increased risk of transition to dementia: low education, hearing loss, hypertension, drinking, smoking, depression, social isolation, physical inactivity, diabetes, and obesity. Results were replicated in ELSA cohort with good accuracy. Machine learning clustering can be used to study dementia determinants and outcomes in longitudinal population ageing surveys in which dementia clinical diagnosis is lacking.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>38031083</pmid><doi>10.1186/s13195-023-01357-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3000-2210</orcidid><orcidid>https://orcid.org/0000-0001-9319-0031</orcidid><orcidid>https://orcid.org/0000-0002-7271-8877</orcidid><orcidid>https://orcid.org/0000-0002-0286-5521</orcidid><orcidid>https://orcid.org/0000-0003-0919-3825</orcidid><orcidid>https://orcid.org/0000-0001-7788-3321</orcidid><orcidid>https://orcid.org/0000-0001-6551-4641</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-9193
ispartof Alzheimer's research & therapy, 2023-11, Vol.15 (1), p.209-209, Article 209
issn 1758-9193
1758-9193
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f6e937a2fd0148f68301a684f8a15513
source Open Access: PubMed Central; Publicly Available Content Database
subjects Age
Aged
Aging
Aging - psychology
Air pollution
Alcohol
Alzheimer's disease
Blood pressure
Body mass index
Clustering
Cognition
Cognition & reasoning
Cognitive Dysfunction - diagnosis
Dementia
Dementia - diagnosis
Dementia - epidemiology
Diabetes
Female
Hearing loss
Humans
Hypertension
Identification
Life Sciences
Longitudinal analysis
Longitudinal Studies
Machine Learning
Male
Methods
Middle Aged
Neurons and Cognition
Population
Population-based surveys
Risk factors
Self report
Social isolation
Statistics
Unsupervised clustering
Variables
title Identification of high likelihood of dementia in population-based surveys using unsupervised clustering: a longitudinal analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20high%20likelihood%20of%20dementia%20in%20population-based%20surveys%20using%20unsupervised%20clustering:%20a%20longitudinal%20analysis&rft.jtitle=Alzheimer's%20research%20&%20therapy&rft.au=Gharbi-Meliani,%20Amin&rft.date=2023-11-29&rft.volume=15&rft.issue=1&rft.spage=209&rft.epage=209&rft.pages=209-209&rft.artnum=209&rft.issn=1758-9193&rft.eissn=1758-9193&rft_id=info:doi/10.1186/s13195-023-01357-9&rft_dat=%3Cproquest_doaj_%3E2895709646%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c531t-1d6d9d59112900e99245551bf84b109a18278942b3c86982d84077dd55e3d1bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902132985&rft_id=info:pmid/38031083&rfr_iscdi=true