Loading…

Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes

Skarn Au deposits exist in the circum-pacific metallogenic belt. Interestingly, the Da’anhe Au deposit is the only independent skarn gold deposit in the Lesser Xing’an Range. To determine the metallogenic mechanism and prospecting potential of the Da’anhe deposit, we performed skarn mineralogy, flui...

Full description

Saved in:
Bibliographic Details
Published in:Minerals (Basel) 2024-03, Vol.14 (3), p.214
Main Authors: Zhao, Chuntao, Sun, Fanting, Sun, Jinggui, Wang, Jianping, Han, Jilong, Chu, Xiaolei, Bai, Chenglin, Yu, Dongmei, Xu, Zhikai, Yi, Lei, Hua, Shan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-329b2189822cb6a050a69322f9f4ad88d58a46b5f15c50bf86ec839b64fdf0963
container_end_page
container_issue 3
container_start_page 214
container_title Minerals (Basel)
container_volume 14
creator Zhao, Chuntao
Sun, Fanting
Sun, Jinggui
Wang, Jianping
Han, Jilong
Chu, Xiaolei
Bai, Chenglin
Yu, Dongmei
Xu, Zhikai
Yi, Lei
Hua, Shan
description Skarn Au deposits exist in the circum-pacific metallogenic belt. Interestingly, the Da’anhe Au deposit is the only independent skarn gold deposit in the Lesser Xing’an Range. To determine the metallogenic mechanism and prospecting potential of the Da’anhe deposit, we performed skarn mineralogy, fluid inclusion (FI) and H-O isotope analyses. The results show the following: (1) The Da’anhe deposit is a calcareous reduced skarn Au deposit that formed between an Early Jurassic gabbroic diorite and the Permian Tumenling Formation marble. Its metallogenic process includes five stages: the early skarn stage (Stage I1), late skarn stage (Stage I2), early quartz-sulfide stage (Stage II1), late quartz-sulfide stage (Stage II2) and quartz-carbonate stage (Stage II3). Gold precipitated in Stage II1 and Stage II2. (2) The initial ore-forming fluid was derived from magmatic water and featured a high temperature and intermediate to high salinity. After boiling and mixing, the fluid eventually changed to a low-temperature and low-salinity reducing fluid dominated by meteoric water. (3) The formation depth of the Au orebodies was 2.27–3.11 km, and the orebodies were later lifted to the surface (
doi_str_mv 10.3390/min14030214
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f6eccc6959ff42e8bdf06e5c2a40c2e2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788251297</galeid><doaj_id>oai_doaj_org_article_f6eccc6959ff42e8bdf06e5c2a40c2e2</doaj_id><sourcerecordid>A788251297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-329b2189822cb6a050a69322f9f4ad88d58a46b5f15c50bf86ec839b64fdf0963</originalsourceid><addsrcrecordid>eNpNks1u1DAUhSMEElXpihewxJKm-Cf22OxG02k70kArfqTuIse5Tj1k7GAnSN3xGjwML8OT4E4qqL3w1dU5n46ub1G8JviMMYXf7Z0nFWaYkupZcUTxgpdEsNvnT-qXxUlKO5yPIkxyelT8vgQPySWkfYtuYkgDmNH5Dt2EEfzodI-CReMdoHP95-cv7XP1-ZuOHi0ndA5DSG5Ezh8Uq2yI_w1bSAkius20gxN90r6DU_RxjVZ3zuv3aP3DteANIBvD_hH7wXnIkNDdn6KLfnIt2njTT8kFP4e8Kq_RJoUxDJBeFS-s7hOcPL7HxdeL9ZfVVbm9vtysltvSMEHGklHVUCKVpNQ0QmOOtVCMUqtspVspWy51JRpuCTccN1YKMJKpRlS2tVgJdlxsZm4b9K4eotvreF8H7epDI8Su1nF0pofaZq8xQnFlbUVBNpkggBuqK2wo0Mx6M7OGGL5PkMZ6F6boc_yaYcwYF2TxoDqbVZ3OUOdtyKM1-bawdyZ4sC73lwspKSdULbLh7Www-RNTBPsvJsH1w37UT_aD_QXkrq-M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003356172</pqid></control><display><type>article</type><title>Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes</title><source>Access via ProQuest (Open Access)</source><source>ABI/INFORM Global</source><creator>Zhao, Chuntao ; Sun, Fanting ; Sun, Jinggui ; Wang, Jianping ; Han, Jilong ; Chu, Xiaolei ; Bai, Chenglin ; Yu, Dongmei ; Xu, Zhikai ; Yi, Lei ; Hua, Shan</creator><creatorcontrib>Zhao, Chuntao ; Sun, Fanting ; Sun, Jinggui ; Wang, Jianping ; Han, Jilong ; Chu, Xiaolei ; Bai, Chenglin ; Yu, Dongmei ; Xu, Zhikai ; Yi, Lei ; Hua, Shan</creatorcontrib><description>Skarn Au deposits exist in the circum-pacific metallogenic belt. Interestingly, the Da’anhe Au deposit is the only independent skarn gold deposit in the Lesser Xing’an Range. To determine the metallogenic mechanism and prospecting potential of the Da’anhe deposit, we performed skarn mineralogy, fluid inclusion (FI) and H-O isotope analyses. The results show the following: (1) The Da’anhe deposit is a calcareous reduced skarn Au deposit that formed between an Early Jurassic gabbroic diorite and the Permian Tumenling Formation marble. Its metallogenic process includes five stages: the early skarn stage (Stage I1), late skarn stage (Stage I2), early quartz-sulfide stage (Stage II1), late quartz-sulfide stage (Stage II2) and quartz-carbonate stage (Stage II3). Gold precipitated in Stage II1 and Stage II2. (2) The initial ore-forming fluid was derived from magmatic water and featured a high temperature and intermediate to high salinity. After boiling and mixing, the fluid eventually changed to a low-temperature and low-salinity reducing fluid dominated by meteoric water. (3) The formation depth of the Au orebodies was 2.27–3.11 km, and the orebodies were later lifted to the surface (&lt;500 m). The potential for finding skarn Au deposits in the study area is limited. (4) The distinctive nature of the ore-related magma (i.e., source, reducing conditions and high water content) was key to the formation of the Da’anhe skarn gold deposit.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min14030214</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Anniversaries ; Carbonates ; Da’anhe Au deposit ; Diorite ; Exploration ; Fault lines ; fluid inclusion ; Fluid inclusions ; Geology ; Gold ; H-O isotopes ; High temperature ; Isotopes ; Jurassic ; Lava ; lesser Xing’an range ; Low temperature ; Magma ; Magmatic water ; Marble ; Metallogenesis ; Meteoric water ; Mineral deposits ; Mineralization ; Mineralogy ; Moisture content ; Molybdenum ; Permian ; Quartz ; Rocks ; Salinity ; Salinity effects ; skarn mineralogy ; Stone ; Stratigraphy ; Sulfides ; Sulphides ; Water content ; Water depth</subject><ispartof>Minerals (Basel), 2024-03, Vol.14 (3), p.214</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-329b2189822cb6a050a69322f9f4ad88d58a46b5f15c50bf86ec839b64fdf0963</cites><orcidid>0000-0002-7148-8854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003356172/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003356172?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74895,75126</link.rule.ids></links><search><creatorcontrib>Zhao, Chuntao</creatorcontrib><creatorcontrib>Sun, Fanting</creatorcontrib><creatorcontrib>Sun, Jinggui</creatorcontrib><creatorcontrib>Wang, Jianping</creatorcontrib><creatorcontrib>Han, Jilong</creatorcontrib><creatorcontrib>Chu, Xiaolei</creatorcontrib><creatorcontrib>Bai, Chenglin</creatorcontrib><creatorcontrib>Yu, Dongmei</creatorcontrib><creatorcontrib>Xu, Zhikai</creatorcontrib><creatorcontrib>Yi, Lei</creatorcontrib><creatorcontrib>Hua, Shan</creatorcontrib><title>Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes</title><title>Minerals (Basel)</title><description>Skarn Au deposits exist in the circum-pacific metallogenic belt. Interestingly, the Da’anhe Au deposit is the only independent skarn gold deposit in the Lesser Xing’an Range. To determine the metallogenic mechanism and prospecting potential of the Da’anhe deposit, we performed skarn mineralogy, fluid inclusion (FI) and H-O isotope analyses. The results show the following: (1) The Da’anhe deposit is a calcareous reduced skarn Au deposit that formed between an Early Jurassic gabbroic diorite and the Permian Tumenling Formation marble. Its metallogenic process includes five stages: the early skarn stage (Stage I1), late skarn stage (Stage I2), early quartz-sulfide stage (Stage II1), late quartz-sulfide stage (Stage II2) and quartz-carbonate stage (Stage II3). Gold precipitated in Stage II1 and Stage II2. (2) The initial ore-forming fluid was derived from magmatic water and featured a high temperature and intermediate to high salinity. After boiling and mixing, the fluid eventually changed to a low-temperature and low-salinity reducing fluid dominated by meteoric water. (3) The formation depth of the Au orebodies was 2.27–3.11 km, and the orebodies were later lifted to the surface (&lt;500 m). The potential for finding skarn Au deposits in the study area is limited. (4) The distinctive nature of the ore-related magma (i.e., source, reducing conditions and high water content) was key to the formation of the Da’anhe skarn gold deposit.</description><subject>Anniversaries</subject><subject>Carbonates</subject><subject>Da’anhe Au deposit</subject><subject>Diorite</subject><subject>Exploration</subject><subject>Fault lines</subject><subject>fluid inclusion</subject><subject>Fluid inclusions</subject><subject>Geology</subject><subject>Gold</subject><subject>H-O isotopes</subject><subject>High temperature</subject><subject>Isotopes</subject><subject>Jurassic</subject><subject>Lava</subject><subject>lesser Xing’an range</subject><subject>Low temperature</subject><subject>Magma</subject><subject>Magmatic water</subject><subject>Marble</subject><subject>Metallogenesis</subject><subject>Meteoric water</subject><subject>Mineral deposits</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Moisture content</subject><subject>Molybdenum</subject><subject>Permian</subject><subject>Quartz</subject><subject>Rocks</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>skarn mineralogy</subject><subject>Stone</subject><subject>Stratigraphy</subject><subject>Sulfides</subject><subject>Sulphides</subject><subject>Water content</subject><subject>Water depth</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNks1u1DAUhSMEElXpihewxJKm-Cf22OxG02k70kArfqTuIse5Tj1k7GAnSN3xGjwML8OT4E4qqL3w1dU5n46ub1G8JviMMYXf7Z0nFWaYkupZcUTxgpdEsNvnT-qXxUlKO5yPIkxyelT8vgQPySWkfYtuYkgDmNH5Dt2EEfzodI-CReMdoHP95-cv7XP1-ZuOHi0ndA5DSG5Ezh8Uq2yI_w1bSAkius20gxN90r6DU_RxjVZ3zuv3aP3DteANIBvD_hH7wXnIkNDdn6KLfnIt2njTT8kFP4e8Kq_RJoUxDJBeFS-s7hOcPL7HxdeL9ZfVVbm9vtysltvSMEHGklHVUCKVpNQ0QmOOtVCMUqtspVspWy51JRpuCTccN1YKMJKpRlS2tVgJdlxsZm4b9K4eotvreF8H7epDI8Su1nF0pofaZq8xQnFlbUVBNpkggBuqK2wo0Mx6M7OGGL5PkMZ6F6boc_yaYcwYF2TxoDqbVZ3OUOdtyKM1-bawdyZ4sC73lwspKSdULbLh7Www-RNTBPsvJsH1w37UT_aD_QXkrq-M</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zhao, Chuntao</creator><creator>Sun, Fanting</creator><creator>Sun, Jinggui</creator><creator>Wang, Jianping</creator><creator>Han, Jilong</creator><creator>Chu, Xiaolei</creator><creator>Bai, Chenglin</creator><creator>Yu, Dongmei</creator><creator>Xu, Zhikai</creator><creator>Yi, Lei</creator><creator>Hua, Shan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7148-8854</orcidid></search><sort><creationdate>20240301</creationdate><title>Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes</title><author>Zhao, Chuntao ; Sun, Fanting ; Sun, Jinggui ; Wang, Jianping ; Han, Jilong ; Chu, Xiaolei ; Bai, Chenglin ; Yu, Dongmei ; Xu, Zhikai ; Yi, Lei ; Hua, Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-329b2189822cb6a050a69322f9f4ad88d58a46b5f15c50bf86ec839b64fdf0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anniversaries</topic><topic>Carbonates</topic><topic>Da’anhe Au deposit</topic><topic>Diorite</topic><topic>Exploration</topic><topic>Fault lines</topic><topic>fluid inclusion</topic><topic>Fluid inclusions</topic><topic>Geology</topic><topic>Gold</topic><topic>H-O isotopes</topic><topic>High temperature</topic><topic>Isotopes</topic><topic>Jurassic</topic><topic>Lava</topic><topic>lesser Xing’an range</topic><topic>Low temperature</topic><topic>Magma</topic><topic>Magmatic water</topic><topic>Marble</topic><topic>Metallogenesis</topic><topic>Meteoric water</topic><topic>Mineral deposits</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Moisture content</topic><topic>Molybdenum</topic><topic>Permian</topic><topic>Quartz</topic><topic>Rocks</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>skarn mineralogy</topic><topic>Stone</topic><topic>Stratigraphy</topic><topic>Sulfides</topic><topic>Sulphides</topic><topic>Water content</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chuntao</creatorcontrib><creatorcontrib>Sun, Fanting</creatorcontrib><creatorcontrib>Sun, Jinggui</creatorcontrib><creatorcontrib>Wang, Jianping</creatorcontrib><creatorcontrib>Han, Jilong</creatorcontrib><creatorcontrib>Chu, Xiaolei</creatorcontrib><creatorcontrib>Bai, Chenglin</creatorcontrib><creatorcontrib>Yu, Dongmei</creatorcontrib><creatorcontrib>Xu, Zhikai</creatorcontrib><creatorcontrib>Yi, Lei</creatorcontrib><creatorcontrib>Hua, Shan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chuntao</au><au>Sun, Fanting</au><au>Sun, Jinggui</au><au>Wang, Jianping</au><au>Han, Jilong</au><au>Chu, Xiaolei</au><au>Bai, Chenglin</au><au>Yu, Dongmei</au><au>Xu, Zhikai</au><au>Yi, Lei</au><au>Hua, Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes</atitle><jtitle>Minerals (Basel)</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>14</volume><issue>3</issue><spage>214</spage><pages>214-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>Skarn Au deposits exist in the circum-pacific metallogenic belt. Interestingly, the Da’anhe Au deposit is the only independent skarn gold deposit in the Lesser Xing’an Range. To determine the metallogenic mechanism and prospecting potential of the Da’anhe deposit, we performed skarn mineralogy, fluid inclusion (FI) and H-O isotope analyses. The results show the following: (1) The Da’anhe deposit is a calcareous reduced skarn Au deposit that formed between an Early Jurassic gabbroic diorite and the Permian Tumenling Formation marble. Its metallogenic process includes five stages: the early skarn stage (Stage I1), late skarn stage (Stage I2), early quartz-sulfide stage (Stage II1), late quartz-sulfide stage (Stage II2) and quartz-carbonate stage (Stage II3). Gold precipitated in Stage II1 and Stage II2. (2) The initial ore-forming fluid was derived from magmatic water and featured a high temperature and intermediate to high salinity. After boiling and mixing, the fluid eventually changed to a low-temperature and low-salinity reducing fluid dominated by meteoric water. (3) The formation depth of the Au orebodies was 2.27–3.11 km, and the orebodies were later lifted to the surface (&lt;500 m). The potential for finding skarn Au deposits in the study area is limited. (4) The distinctive nature of the ore-related magma (i.e., source, reducing conditions and high water content) was key to the formation of the Da’anhe skarn gold deposit.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min14030214</doi><orcidid>https://orcid.org/0000-0002-7148-8854</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-163X
ispartof Minerals (Basel), 2024-03, Vol.14 (3), p.214
issn 2075-163X
2075-163X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f6eccc6959ff42e8bdf06e5c2a40c2e2
source Access via ProQuest (Open Access); ABI/INFORM Global
subjects Anniversaries
Carbonates
Da’anhe Au deposit
Diorite
Exploration
Fault lines
fluid inclusion
Fluid inclusions
Geology
Gold
H-O isotopes
High temperature
Isotopes
Jurassic
Lava
lesser Xing’an range
Low temperature
Magma
Magmatic water
Marble
Metallogenesis
Meteoric water
Mineral deposits
Mineralization
Mineralogy
Moisture content
Molybdenum
Permian
Quartz
Rocks
Salinity
Salinity effects
skarn mineralogy
Stone
Stratigraphy
Sulfides
Sulphides
Water content
Water depth
title Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genesis%20and%20Prospecting%20Potential%20of%20the%20Da%E2%80%99anhe%20Skarn%20Au%20Deposit%20in%20the%20Central%20of%20the%20Lesser%20Xing%E2%80%99an%20Range,%20NE%20China:%20Evidence%20from%20Skarn%20Mineralogy,%20Fluid%20Inclusions%20and%20H-O%20Isotopes&rft.jtitle=Minerals%20(Basel)&rft.au=Zhao,%20Chuntao&rft.date=2024-03-01&rft.volume=14&rft.issue=3&rft.spage=214&rft.pages=214-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min14030214&rft_dat=%3Cgale_doaj_%3EA788251297%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-329b2189822cb6a050a69322f9f4ad88d58a46b5f15c50bf86ec839b64fdf0963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003356172&rft_id=info:pmid/&rft_galeid=A788251297&rfr_iscdi=true