Loading…
3D hypoxia-mimicking and anti-synechia hydrogel enabling promoted neovascularization for renal injury repair and regeneration
In-situ renal tissue engineering is promising yet challenging for renal injury repair and regeneration due to the highly vascularized structure of renal tissue and complex high-oxidative stress and ischemic microenvironment. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained r...
Saved in:
Published in: | Materials today bio 2023-08, Vol.21, p.100694-100694, Article 100694 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c476t-d9692f9b771ecdf32e53c71771345e92c4a3426ede14804a18a27d48208ea0673 |
container_end_page | 100694 |
container_issue | |
container_start_page | 100694 |
container_title | Materials today bio |
container_volume | 21 |
creator | Zhang, Yuehang Yu, Lei Qiu, Renjie Cao, Lisha Ye, Genlan Lin, Rurong Wang, Yongqin Wang, Guobao Hu, Bianxiang Hou, Honghao |
description | In-situ renal tissue engineering is promising yet challenging for renal injury repair and regeneration due to the highly vascularized structure of renal tissue and complex high-oxidative stress and ischemic microenvironment. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair. In vitro and in vivo experimental results demonstrated that the developed DFO-gels can exert the synchronous benefit of scavenging excess reactive oxygen species (ROS) regulating inflammatory microenvironment and promoting angiogenesis for effective renal injury repair by up-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). The in-situ neogenesis of neonatal glomerular- and tubular-like structures in the implanted areas in the partially nephrectomized rats also suggested the potential for promoting renal injury repair and regeneration. This multifunctional hydrogel can not only exhibit the sustained release and promoted bio-uptake capacity for DFO, but also improve the renal injured microenvironment by alleviating oxidative and inflammatory stress, accelerating neovascularization, and promoting efficient anti-synechia. We believe this work offers a promising strategy for renal injury repair and regeneration.
Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair by promoted neovascularization and anti-synechia performance. [Display omitted] |
doi_str_mv | 10.1016/j.mtbio.2023.100694 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f705b590c25b48ecb74eb41429b19f73</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2590006423001540</els_id><doaj_id>oai_doaj_org_article_f705b590c25b48ecb74eb41429b19f73</doaj_id><sourcerecordid>2828774011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-d9692f9b771ecdf32e53c71771345e92c4a3426ede14804a18a27d48208ea0673</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpL0BCOXLJ4q_E8QEhVGipVIkLnC3HmWQnJHawsysWif-Od1Oq9sLBsmf8zDvW68my15RsKKHVu2EzLQ36DSOMpwyplHiWnbNSkSIF4vmj81l2GeNACGFSCULUy-yMSy4qWZPz7A__lG8Ps_-FpphwQvsDXZ8b16a1YBEPDuwWTWLa4HsYc3CmGY_MHPzkF2hzB35vot2NJuBvs6B3eedDHhI55uiGXTikYDYYTroBenAQTuCr7EVnxgiX9_tF9v3687erL8Xd15vbq493hRWyWopWVYp1qpGSgm07zqDkVtIUclGCYlYYLlgFLVBRE2FobZhsRc1IDYZUkl9kt6tu682g54CTCQftDepTwodem7CgHUF3kpRNss6yshE12EYKaAQVTDVUdZInrQ-r1rxrJmgtuCWY8Yno0xuHW937vabHDyjLMim8vVcI_ucO4qInjBbG0SQrd1GzmtVSCkJpQvmK2uBjDNA99KFEHwdBD_o0CPo4CHodhFT15vETH2r-fXsC3q8AJNP3CEFHi-AstBjALskV_G-Dv46Ex6s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828774011</pqid></control><display><type>article</type><title>3D hypoxia-mimicking and anti-synechia hydrogel enabling promoted neovascularization for renal injury repair and regeneration</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Zhang, Yuehang ; Yu, Lei ; Qiu, Renjie ; Cao, Lisha ; Ye, Genlan ; Lin, Rurong ; Wang, Yongqin ; Wang, Guobao ; Hu, Bianxiang ; Hou, Honghao</creator><creatorcontrib>Zhang, Yuehang ; Yu, Lei ; Qiu, Renjie ; Cao, Lisha ; Ye, Genlan ; Lin, Rurong ; Wang, Yongqin ; Wang, Guobao ; Hu, Bianxiang ; Hou, Honghao</creatorcontrib><description>In-situ renal tissue engineering is promising yet challenging for renal injury repair and regeneration due to the highly vascularized structure of renal tissue and complex high-oxidative stress and ischemic microenvironment. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair. In vitro and in vivo experimental results demonstrated that the developed DFO-gels can exert the synchronous benefit of scavenging excess reactive oxygen species (ROS) regulating inflammatory microenvironment and promoting angiogenesis for effective renal injury repair by up-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). The in-situ neogenesis of neonatal glomerular- and tubular-like structures in the implanted areas in the partially nephrectomized rats also suggested the potential for promoting renal injury repair and regeneration. This multifunctional hydrogel can not only exhibit the sustained release and promoted bio-uptake capacity for DFO, but also improve the renal injured microenvironment by alleviating oxidative and inflammatory stress, accelerating neovascularization, and promoting efficient anti-synechia. We believe this work offers a promising strategy for renal injury repair and regeneration.
Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair by promoted neovascularization and anti-synechia performance. [Display omitted]</description><identifier>ISSN: 2590-0064</identifier><identifier>EISSN: 2590-0064</identifier><identifier>DOI: 10.1016/j.mtbio.2023.100694</identifier><identifier>PMID: 37346780</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Angiogenesis ; Anti-synechia ; Deferoxamine (DFO) ; Full Length ; Hypoxia-mimicking ; Renal tissue engineering ; Sustained release</subject><ispartof>Materials today bio, 2023-08, Vol.21, p.100694-100694, Article 100694</ispartof><rights>2023 The Authors</rights><rights>2023 The Authors.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c476t-d9692f9b771ecdf32e53c71771345e92c4a3426ede14804a18a27d48208ea0673</cites><orcidid>0000-0002-7133-9760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279555/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2590006423001540$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37346780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuehang</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Qiu, Renjie</creatorcontrib><creatorcontrib>Cao, Lisha</creatorcontrib><creatorcontrib>Ye, Genlan</creatorcontrib><creatorcontrib>Lin, Rurong</creatorcontrib><creatorcontrib>Wang, Yongqin</creatorcontrib><creatorcontrib>Wang, Guobao</creatorcontrib><creatorcontrib>Hu, Bianxiang</creatorcontrib><creatorcontrib>Hou, Honghao</creatorcontrib><title>3D hypoxia-mimicking and anti-synechia hydrogel enabling promoted neovascularization for renal injury repair and regeneration</title><title>Materials today bio</title><addtitle>Mater Today Bio</addtitle><description>In-situ renal tissue engineering is promising yet challenging for renal injury repair and regeneration due to the highly vascularized structure of renal tissue and complex high-oxidative stress and ischemic microenvironment. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair. In vitro and in vivo experimental results demonstrated that the developed DFO-gels can exert the synchronous benefit of scavenging excess reactive oxygen species (ROS) regulating inflammatory microenvironment and promoting angiogenesis for effective renal injury repair by up-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). The in-situ neogenesis of neonatal glomerular- and tubular-like structures in the implanted areas in the partially nephrectomized rats also suggested the potential for promoting renal injury repair and regeneration. This multifunctional hydrogel can not only exhibit the sustained release and promoted bio-uptake capacity for DFO, but also improve the renal injured microenvironment by alleviating oxidative and inflammatory stress, accelerating neovascularization, and promoting efficient anti-synechia. We believe this work offers a promising strategy for renal injury repair and regeneration.
Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair by promoted neovascularization and anti-synechia performance. [Display omitted]</description><subject>Angiogenesis</subject><subject>Anti-synechia</subject><subject>Deferoxamine (DFO)</subject><subject>Full Length</subject><subject>Hypoxia-mimicking</subject><subject>Renal tissue engineering</subject><subject>Sustained release</subject><issn>2590-0064</issn><issn>2590-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpL0BCOXLJ4q_E8QEhVGipVIkLnC3HmWQnJHawsysWif-Od1Oq9sLBsmf8zDvW68my15RsKKHVu2EzLQ36DSOMpwyplHiWnbNSkSIF4vmj81l2GeNACGFSCULUy-yMSy4qWZPz7A__lG8Ps_-FpphwQvsDXZ8b16a1YBEPDuwWTWLa4HsYc3CmGY_MHPzkF2hzB35vot2NJuBvs6B3eedDHhI55uiGXTikYDYYTroBenAQTuCr7EVnxgiX9_tF9v3687erL8Xd15vbq493hRWyWopWVYp1qpGSgm07zqDkVtIUclGCYlYYLlgFLVBRE2FobZhsRc1IDYZUkl9kt6tu682g54CTCQftDepTwodem7CgHUF3kpRNss6yshE12EYKaAQVTDVUdZInrQ-r1rxrJmgtuCWY8Yno0xuHW937vabHDyjLMim8vVcI_ucO4qInjBbG0SQrd1GzmtVSCkJpQvmK2uBjDNA99KFEHwdBD_o0CPo4CHodhFT15vETH2r-fXsC3q8AJNP3CEFHi-AstBjALskV_G-Dv46Ex6s</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhang, Yuehang</creator><creator>Yu, Lei</creator><creator>Qiu, Renjie</creator><creator>Cao, Lisha</creator><creator>Ye, Genlan</creator><creator>Lin, Rurong</creator><creator>Wang, Yongqin</creator><creator>Wang, Guobao</creator><creator>Hu, Bianxiang</creator><creator>Hou, Honghao</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7133-9760</orcidid></search><sort><creationdate>20230801</creationdate><title>3D hypoxia-mimicking and anti-synechia hydrogel enabling promoted neovascularization for renal injury repair and regeneration</title><author>Zhang, Yuehang ; Yu, Lei ; Qiu, Renjie ; Cao, Lisha ; Ye, Genlan ; Lin, Rurong ; Wang, Yongqin ; Wang, Guobao ; Hu, Bianxiang ; Hou, Honghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-d9692f9b771ecdf32e53c71771345e92c4a3426ede14804a18a27d48208ea0673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angiogenesis</topic><topic>Anti-synechia</topic><topic>Deferoxamine (DFO)</topic><topic>Full Length</topic><topic>Hypoxia-mimicking</topic><topic>Renal tissue engineering</topic><topic>Sustained release</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuehang</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Qiu, Renjie</creatorcontrib><creatorcontrib>Cao, Lisha</creatorcontrib><creatorcontrib>Ye, Genlan</creatorcontrib><creatorcontrib>Lin, Rurong</creatorcontrib><creatorcontrib>Wang, Yongqin</creatorcontrib><creatorcontrib>Wang, Guobao</creatorcontrib><creatorcontrib>Hu, Bianxiang</creatorcontrib><creatorcontrib>Hou, Honghao</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials today bio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuehang</au><au>Yu, Lei</au><au>Qiu, Renjie</au><au>Cao, Lisha</au><au>Ye, Genlan</au><au>Lin, Rurong</au><au>Wang, Yongqin</au><au>Wang, Guobao</au><au>Hu, Bianxiang</au><au>Hou, Honghao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D hypoxia-mimicking and anti-synechia hydrogel enabling promoted neovascularization for renal injury repair and regeneration</atitle><jtitle>Materials today bio</jtitle><addtitle>Mater Today Bio</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>21</volume><spage>100694</spage><epage>100694</epage><pages>100694-100694</pages><artnum>100694</artnum><issn>2590-0064</issn><eissn>2590-0064</eissn><abstract>In-situ renal tissue engineering is promising yet challenging for renal injury repair and regeneration due to the highly vascularized structure of renal tissue and complex high-oxidative stress and ischemic microenvironment. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair. In vitro and in vivo experimental results demonstrated that the developed DFO-gels can exert the synchronous benefit of scavenging excess reactive oxygen species (ROS) regulating inflammatory microenvironment and promoting angiogenesis for effective renal injury repair by up-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). The in-situ neogenesis of neonatal glomerular- and tubular-like structures in the implanted areas in the partially nephrectomized rats also suggested the potential for promoting renal injury repair and regeneration. This multifunctional hydrogel can not only exhibit the sustained release and promoted bio-uptake capacity for DFO, but also improve the renal injured microenvironment by alleviating oxidative and inflammatory stress, accelerating neovascularization, and promoting efficient anti-synechia. We believe this work offers a promising strategy for renal injury repair and regeneration.
Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair by promoted neovascularization and anti-synechia performance. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37346780</pmid><doi>10.1016/j.mtbio.2023.100694</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7133-9760</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2590-0064 |
ispartof | Materials today bio, 2023-08, Vol.21, p.100694-100694, Article 100694 |
issn | 2590-0064 2590-0064 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f705b590c25b48ecb74eb41429b19f73 |
source | Open Access: PubMed Central; ScienceDirect Journals |
subjects | Angiogenesis Anti-synechia Deferoxamine (DFO) Full Length Hypoxia-mimicking Renal tissue engineering Sustained release |
title | 3D hypoxia-mimicking and anti-synechia hydrogel enabling promoted neovascularization for renal injury repair and regeneration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20hypoxia-mimicking%20and%20anti-synechia%20hydrogel%20enabling%20promoted%20neovascularization%20for%20renal%20injury%20repair%20and%20regeneration&rft.jtitle=Materials%20today%20bio&rft.au=Zhang,%20Yuehang&rft.date=2023-08-01&rft.volume=21&rft.spage=100694&rft.epage=100694&rft.pages=100694-100694&rft.artnum=100694&rft.issn=2590-0064&rft.eissn=2590-0064&rft_id=info:doi/10.1016/j.mtbio.2023.100694&rft_dat=%3Cproquest_doaj_%3E2828774011%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-d9692f9b771ecdf32e53c71771345e92c4a3426ede14804a18a27d48208ea0673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828774011&rft_id=info:pmid/37346780&rfr_iscdi=true |