Loading…

3D hypoxia-mimicking and anti-synechia hydrogel enabling promoted neovascularization for renal injury repair and regeneration

In-situ renal tissue engineering is promising yet challenging for renal injury repair and regeneration due to the highly vascularized structure of renal tissue and complex high-oxidative stress and ischemic microenvironment. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained r...

Full description

Saved in:
Bibliographic Details
Published in:Materials today bio 2023-08, Vol.21, p.100694-100694, Article 100694
Main Authors: Zhang, Yuehang, Yu, Lei, Qiu, Renjie, Cao, Lisha, Ye, Genlan, Lin, Rurong, Wang, Yongqin, Wang, Guobao, Hu, Bianxiang, Hou, Honghao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c476t-d9692f9b771ecdf32e53c71771345e92c4a3426ede14804a18a27d48208ea0673
container_end_page 100694
container_issue
container_start_page 100694
container_title Materials today bio
container_volume 21
creator Zhang, Yuehang
Yu, Lei
Qiu, Renjie
Cao, Lisha
Ye, Genlan
Lin, Rurong
Wang, Yongqin
Wang, Guobao
Hu, Bianxiang
Hou, Honghao
description In-situ renal tissue engineering is promising yet challenging for renal injury repair and regeneration due to the highly vascularized structure of renal tissue and complex high-oxidative stress and ischemic microenvironment. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair. In vitro and in vivo experimental results demonstrated that the developed DFO-gels can exert the synchronous benefit of scavenging excess reactive oxygen species (ROS) regulating inflammatory microenvironment and promoting angiogenesis for effective renal injury repair by up-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). The in-situ neogenesis of neonatal glomerular- and tubular-like structures in the implanted areas in the partially nephrectomized rats also suggested the potential for promoting renal injury repair and regeneration. This multifunctional hydrogel can not only exhibit the sustained release and promoted bio-uptake capacity for DFO, but also improve the renal injured microenvironment by alleviating oxidative and inflammatory stress, accelerating neovascularization, and promoting efficient anti-synechia. We believe this work offers a promising strategy for renal injury repair and regeneration. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair by promoted neovascularization and anti-synechia performance. [Display omitted]
doi_str_mv 10.1016/j.mtbio.2023.100694
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f705b590c25b48ecb74eb41429b19f73</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2590006423001540</els_id><doaj_id>oai_doaj_org_article_f705b590c25b48ecb74eb41429b19f73</doaj_id><sourcerecordid>2828774011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-d9692f9b771ecdf32e53c71771345e92c4a3426ede14804a18a27d48208ea0673</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpL0BCOXLJ4q_E8QEhVGipVIkLnC3HmWQnJHawsysWif-Od1Oq9sLBsmf8zDvW68my15RsKKHVu2EzLQ36DSOMpwyplHiWnbNSkSIF4vmj81l2GeNACGFSCULUy-yMSy4qWZPz7A__lG8Ps_-FpphwQvsDXZ8b16a1YBEPDuwWTWLa4HsYc3CmGY_MHPzkF2hzB35vot2NJuBvs6B3eedDHhI55uiGXTikYDYYTroBenAQTuCr7EVnxgiX9_tF9v3687erL8Xd15vbq493hRWyWopWVYp1qpGSgm07zqDkVtIUclGCYlYYLlgFLVBRE2FobZhsRc1IDYZUkl9kt6tu682g54CTCQftDepTwodem7CgHUF3kpRNss6yshE12EYKaAQVTDVUdZInrQ-r1rxrJmgtuCWY8Yno0xuHW937vabHDyjLMim8vVcI_ucO4qInjBbG0SQrd1GzmtVSCkJpQvmK2uBjDNA99KFEHwdBD_o0CPo4CHodhFT15vETH2r-fXsC3q8AJNP3CEFHi-AstBjALskV_G-Dv46Ex6s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828774011</pqid></control><display><type>article</type><title>3D hypoxia-mimicking and anti-synechia hydrogel enabling promoted neovascularization for renal injury repair and regeneration</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Zhang, Yuehang ; Yu, Lei ; Qiu, Renjie ; Cao, Lisha ; Ye, Genlan ; Lin, Rurong ; Wang, Yongqin ; Wang, Guobao ; Hu, Bianxiang ; Hou, Honghao</creator><creatorcontrib>Zhang, Yuehang ; Yu, Lei ; Qiu, Renjie ; Cao, Lisha ; Ye, Genlan ; Lin, Rurong ; Wang, Yongqin ; Wang, Guobao ; Hu, Bianxiang ; Hou, Honghao</creatorcontrib><description>In-situ renal tissue engineering is promising yet challenging for renal injury repair and regeneration due to the highly vascularized structure of renal tissue and complex high-oxidative stress and ischemic microenvironment. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair. In vitro and in vivo experimental results demonstrated that the developed DFO-gels can exert the synchronous benefit of scavenging excess reactive oxygen species (ROS) regulating inflammatory microenvironment and promoting angiogenesis for effective renal injury repair by up-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). The in-situ neogenesis of neonatal glomerular- and tubular-like structures in the implanted areas in the partially nephrectomized rats also suggested the potential for promoting renal injury repair and regeneration. This multifunctional hydrogel can not only exhibit the sustained release and promoted bio-uptake capacity for DFO, but also improve the renal injured microenvironment by alleviating oxidative and inflammatory stress, accelerating neovascularization, and promoting efficient anti-synechia. We believe this work offers a promising strategy for renal injury repair and regeneration. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair by promoted neovascularization and anti-synechia performance. [Display omitted]</description><identifier>ISSN: 2590-0064</identifier><identifier>EISSN: 2590-0064</identifier><identifier>DOI: 10.1016/j.mtbio.2023.100694</identifier><identifier>PMID: 37346780</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Angiogenesis ; Anti-synechia ; Deferoxamine (DFO) ; Full Length ; Hypoxia-mimicking ; Renal tissue engineering ; Sustained release</subject><ispartof>Materials today bio, 2023-08, Vol.21, p.100694-100694, Article 100694</ispartof><rights>2023 The Authors</rights><rights>2023 The Authors.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c476t-d9692f9b771ecdf32e53c71771345e92c4a3426ede14804a18a27d48208ea0673</cites><orcidid>0000-0002-7133-9760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279555/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2590006423001540$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37346780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuehang</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Qiu, Renjie</creatorcontrib><creatorcontrib>Cao, Lisha</creatorcontrib><creatorcontrib>Ye, Genlan</creatorcontrib><creatorcontrib>Lin, Rurong</creatorcontrib><creatorcontrib>Wang, Yongqin</creatorcontrib><creatorcontrib>Wang, Guobao</creatorcontrib><creatorcontrib>Hu, Bianxiang</creatorcontrib><creatorcontrib>Hou, Honghao</creatorcontrib><title>3D hypoxia-mimicking and anti-synechia hydrogel enabling promoted neovascularization for renal injury repair and regeneration</title><title>Materials today bio</title><addtitle>Mater Today Bio</addtitle><description>In-situ renal tissue engineering is promising yet challenging for renal injury repair and regeneration due to the highly vascularized structure of renal tissue and complex high-oxidative stress and ischemic microenvironment. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair. In vitro and in vivo experimental results demonstrated that the developed DFO-gels can exert the synchronous benefit of scavenging excess reactive oxygen species (ROS) regulating inflammatory microenvironment and promoting angiogenesis for effective renal injury repair by up-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). The in-situ neogenesis of neonatal glomerular- and tubular-like structures in the implanted areas in the partially nephrectomized rats also suggested the potential for promoting renal injury repair and regeneration. This multifunctional hydrogel can not only exhibit the sustained release and promoted bio-uptake capacity for DFO, but also improve the renal injured microenvironment by alleviating oxidative and inflammatory stress, accelerating neovascularization, and promoting efficient anti-synechia. We believe this work offers a promising strategy for renal injury repair and regeneration. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair by promoted neovascularization and anti-synechia performance. [Display omitted]</description><subject>Angiogenesis</subject><subject>Anti-synechia</subject><subject>Deferoxamine (DFO)</subject><subject>Full Length</subject><subject>Hypoxia-mimicking</subject><subject>Renal tissue engineering</subject><subject>Sustained release</subject><issn>2590-0064</issn><issn>2590-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpL0BCOXLJ4q_E8QEhVGipVIkLnC3HmWQnJHawsysWif-Od1Oq9sLBsmf8zDvW68my15RsKKHVu2EzLQ36DSOMpwyplHiWnbNSkSIF4vmj81l2GeNACGFSCULUy-yMSy4qWZPz7A__lG8Ps_-FpphwQvsDXZ8b16a1YBEPDuwWTWLa4HsYc3CmGY_MHPzkF2hzB35vot2NJuBvs6B3eedDHhI55uiGXTikYDYYTroBenAQTuCr7EVnxgiX9_tF9v3687erL8Xd15vbq493hRWyWopWVYp1qpGSgm07zqDkVtIUclGCYlYYLlgFLVBRE2FobZhsRc1IDYZUkl9kt6tu682g54CTCQftDepTwodem7CgHUF3kpRNss6yshE12EYKaAQVTDVUdZInrQ-r1rxrJmgtuCWY8Yno0xuHW937vabHDyjLMim8vVcI_ucO4qInjBbG0SQrd1GzmtVSCkJpQvmK2uBjDNA99KFEHwdBD_o0CPo4CHodhFT15vETH2r-fXsC3q8AJNP3CEFHi-AstBjALskV_G-Dv46Ex6s</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhang, Yuehang</creator><creator>Yu, Lei</creator><creator>Qiu, Renjie</creator><creator>Cao, Lisha</creator><creator>Ye, Genlan</creator><creator>Lin, Rurong</creator><creator>Wang, Yongqin</creator><creator>Wang, Guobao</creator><creator>Hu, Bianxiang</creator><creator>Hou, Honghao</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7133-9760</orcidid></search><sort><creationdate>20230801</creationdate><title>3D hypoxia-mimicking and anti-synechia hydrogel enabling promoted neovascularization for renal injury repair and regeneration</title><author>Zhang, Yuehang ; Yu, Lei ; Qiu, Renjie ; Cao, Lisha ; Ye, Genlan ; Lin, Rurong ; Wang, Yongqin ; Wang, Guobao ; Hu, Bianxiang ; Hou, Honghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-d9692f9b771ecdf32e53c71771345e92c4a3426ede14804a18a27d48208ea0673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angiogenesis</topic><topic>Anti-synechia</topic><topic>Deferoxamine (DFO)</topic><topic>Full Length</topic><topic>Hypoxia-mimicking</topic><topic>Renal tissue engineering</topic><topic>Sustained release</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuehang</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Qiu, Renjie</creatorcontrib><creatorcontrib>Cao, Lisha</creatorcontrib><creatorcontrib>Ye, Genlan</creatorcontrib><creatorcontrib>Lin, Rurong</creatorcontrib><creatorcontrib>Wang, Yongqin</creatorcontrib><creatorcontrib>Wang, Guobao</creatorcontrib><creatorcontrib>Hu, Bianxiang</creatorcontrib><creatorcontrib>Hou, Honghao</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials today bio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuehang</au><au>Yu, Lei</au><au>Qiu, Renjie</au><au>Cao, Lisha</au><au>Ye, Genlan</au><au>Lin, Rurong</au><au>Wang, Yongqin</au><au>Wang, Guobao</au><au>Hu, Bianxiang</au><au>Hou, Honghao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D hypoxia-mimicking and anti-synechia hydrogel enabling promoted neovascularization for renal injury repair and regeneration</atitle><jtitle>Materials today bio</jtitle><addtitle>Mater Today Bio</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>21</volume><spage>100694</spage><epage>100694</epage><pages>100694-100694</pages><artnum>100694</artnum><issn>2590-0064</issn><eissn>2590-0064</eissn><abstract>In-situ renal tissue engineering is promising yet challenging for renal injury repair and regeneration due to the highly vascularized structure of renal tissue and complex high-oxidative stress and ischemic microenvironment. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair. In vitro and in vivo experimental results demonstrated that the developed DFO-gels can exert the synchronous benefit of scavenging excess reactive oxygen species (ROS) regulating inflammatory microenvironment and promoting angiogenesis for effective renal injury repair by up-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). The in-situ neogenesis of neonatal glomerular- and tubular-like structures in the implanted areas in the partially nephrectomized rats also suggested the potential for promoting renal injury repair and regeneration. This multifunctional hydrogel can not only exhibit the sustained release and promoted bio-uptake capacity for DFO, but also improve the renal injured microenvironment by alleviating oxidative and inflammatory stress, accelerating neovascularization, and promoting efficient anti-synechia. We believe this work offers a promising strategy for renal injury repair and regeneration. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair by promoted neovascularization and anti-synechia performance. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37346780</pmid><doi>10.1016/j.mtbio.2023.100694</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7133-9760</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2590-0064
ispartof Materials today bio, 2023-08, Vol.21, p.100694-100694, Article 100694
issn 2590-0064
2590-0064
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f705b590c25b48ecb74eb41429b19f73
source Open Access: PubMed Central; ScienceDirect Journals
subjects Angiogenesis
Anti-synechia
Deferoxamine (DFO)
Full Length
Hypoxia-mimicking
Renal tissue engineering
Sustained release
title 3D hypoxia-mimicking and anti-synechia hydrogel enabling promoted neovascularization for renal injury repair and regeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20hypoxia-mimicking%20and%20anti-synechia%20hydrogel%20enabling%20promoted%20neovascularization%20for%20renal%20injury%20repair%20and%20regeneration&rft.jtitle=Materials%20today%20bio&rft.au=Zhang,%20Yuehang&rft.date=2023-08-01&rft.volume=21&rft.spage=100694&rft.epage=100694&rft.pages=100694-100694&rft.artnum=100694&rft.issn=2590-0064&rft.eissn=2590-0064&rft_id=info:doi/10.1016/j.mtbio.2023.100694&rft_dat=%3Cproquest_doaj_%3E2828774011%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-d9692f9b771ecdf32e53c71771345e92c4a3426ede14804a18a27d48208ea0673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828774011&rft_id=info:pmid/37346780&rfr_iscdi=true