Loading…

Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh

For non-uniform control polygons, a parameterized four-point interpolation curve ternary subdivision scheme is proposed, and its convergence and continuity are demonstrated. Following curve subdivision, a non-uniform interpolation surface ternary subdivision on regular quadrilateral meshes is propos...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2023-01, Vol.11 (2), p.486
Main Authors: Peng, Kaijun, Tan, Jieqing, Zhang, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c254t-5e05fc04abe3584f13b947bbeed8e8efe4020fa343a3c2da1ded4bcdc82da5e73
container_end_page
container_issue 2
container_start_page 486
container_title Mathematics (Basel)
container_volume 11
creator Peng, Kaijun
Tan, Jieqing
Zhang, Li
description For non-uniform control polygons, a parameterized four-point interpolation curve ternary subdivision scheme is proposed, and its convergence and continuity are demonstrated. Following curve subdivision, a non-uniform interpolation surface ternary subdivision on regular quadrilateral meshes is proposed by applying the tensor product method. Analyses were conducted on the updating rules of parameters, proving that the limit surface is continuous. In this paper, we present a novel interpolation subdivision method to generate new virtual edge points and new face points of the extraordinary points of quadrilateral mesh. We also provide numerical examples to assess the validity of various interpolation methods.
doi_str_mv 10.3390/math11020486
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f718d6358ee74cf7a61aac14f788293f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f718d6358ee74cf7a61aac14f788293f</doaj_id><sourcerecordid>2767235814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-5e05fc04abe3584f13b947bbeed8e8efe4020fa343a3c2da1ded4bcdc82da5e73</originalsourceid><addsrcrecordid>eNpNUdtKxDAQLaLgor75AQVfrTaXNumjLl4W1hvqmxCmyUSztM2atIJ_b3RFDAOTTM6cM5csOyTlCWNNedrD-EZISUsu661sRikVhUgf2__uu9lBjKsynYYwyZtZ9nLvu8_B9w664hwimvzWD8Xz4KwPff6EYYDwmS-GEcPadzA6P-SPU7CgMfnWuA8Xv2PJHiYwwSUMBujyG4xv-9mOhS7iwa_fy54vL57m18Xy7moxP1sWmlZ8LCosK6tLDi2ySnJLWNtw0baIRqJEizx1ZYFxBkxTA8Sg4a02WqZHhYLtZYsNr_GwUuvg-lS08uDUT8CHVwVhdLpDZQWRpk4yiIJrK6AmAJpwK6SkDbOJ62jDtQ7-fcI4qpWf0hS6qKioBU2phCfU8Qalg48xoP1TJaX6Xof6vw72BeBaf08</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767235814</pqid></control><display><type>article</type><title>Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh</title><source>Publicly Available Content Database</source><creator>Peng, Kaijun ; Tan, Jieqing ; Zhang, Li</creator><creatorcontrib>Peng, Kaijun ; Tan, Jieqing ; Zhang, Li</creatorcontrib><description>For non-uniform control polygons, a parameterized four-point interpolation curve ternary subdivision scheme is proposed, and its convergence and continuity are demonstrated. Following curve subdivision, a non-uniform interpolation surface ternary subdivision on regular quadrilateral meshes is proposed by applying the tensor product method. Analyses were conducted on the updating rules of parameters, proving that the limit surface is continuous. In this paper, we present a novel interpolation subdivision method to generate new virtual edge points and new face points of the extraordinary points of quadrilateral mesh. We also provide numerical examples to assess the validity of various interpolation methods.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math11020486</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; Computer graphics ; Design ; extraordinary point ; Interpolation ; non-uniform subdivision ; Polynomials ; Quadrilaterals ; surface subdivision ; Tensors ; ternary</subject><ispartof>Mathematics (Basel), 2023-01, Vol.11 (2), p.486</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-5e05fc04abe3584f13b947bbeed8e8efe4020fa343a3c2da1ded4bcdc82da5e73</cites><orcidid>0000-0002-0259-440X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767235814/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767235814?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Peng, Kaijun</creatorcontrib><creatorcontrib>Tan, Jieqing</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><title>Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh</title><title>Mathematics (Basel)</title><description>For non-uniform control polygons, a parameterized four-point interpolation curve ternary subdivision scheme is proposed, and its convergence and continuity are demonstrated. Following curve subdivision, a non-uniform interpolation surface ternary subdivision on regular quadrilateral meshes is proposed by applying the tensor product method. Analyses were conducted on the updating rules of parameters, proving that the limit surface is continuous. In this paper, we present a novel interpolation subdivision method to generate new virtual edge points and new face points of the extraordinary points of quadrilateral mesh. We also provide numerical examples to assess the validity of various interpolation methods.</description><subject>Approximation</subject><subject>Computer graphics</subject><subject>Design</subject><subject>extraordinary point</subject><subject>Interpolation</subject><subject>non-uniform subdivision</subject><subject>Polynomials</subject><subject>Quadrilaterals</subject><subject>surface subdivision</subject><subject>Tensors</subject><subject>ternary</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKxDAQLaLgor75AQVfrTaXNumjLl4W1hvqmxCmyUSztM2atIJ_b3RFDAOTTM6cM5csOyTlCWNNedrD-EZISUsu661sRikVhUgf2__uu9lBjKsynYYwyZtZ9nLvu8_B9w664hwimvzWD8Xz4KwPff6EYYDwmS-GEcPadzA6P-SPU7CgMfnWuA8Xv2PJHiYwwSUMBujyG4xv-9mOhS7iwa_fy54vL57m18Xy7moxP1sWmlZ8LCosK6tLDi2ySnJLWNtw0baIRqJEizx1ZYFxBkxTA8Sg4a02WqZHhYLtZYsNr_GwUuvg-lS08uDUT8CHVwVhdLpDZQWRpk4yiIJrK6AmAJpwK6SkDbOJ62jDtQ7-fcI4qpWf0hS6qKioBU2phCfU8Qalg48xoP1TJaX6Xof6vw72BeBaf08</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Peng, Kaijun</creator><creator>Tan, Jieqing</creator><creator>Zhang, Li</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0259-440X</orcidid></search><sort><creationdate>20230101</creationdate><title>Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh</title><author>Peng, Kaijun ; Tan, Jieqing ; Zhang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-5e05fc04abe3584f13b947bbeed8e8efe4020fa343a3c2da1ded4bcdc82da5e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Computer graphics</topic><topic>Design</topic><topic>extraordinary point</topic><topic>Interpolation</topic><topic>non-uniform subdivision</topic><topic>Polynomials</topic><topic>Quadrilaterals</topic><topic>surface subdivision</topic><topic>Tensors</topic><topic>ternary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Kaijun</creatorcontrib><creatorcontrib>Tan, Jieqing</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Kaijun</au><au>Tan, Jieqing</au><au>Zhang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh</atitle><jtitle>Mathematics (Basel)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>486</spage><pages>486-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>For non-uniform control polygons, a parameterized four-point interpolation curve ternary subdivision scheme is proposed, and its convergence and continuity are demonstrated. Following curve subdivision, a non-uniform interpolation surface ternary subdivision on regular quadrilateral meshes is proposed by applying the tensor product method. Analyses were conducted on the updating rules of parameters, proving that the limit surface is continuous. In this paper, we present a novel interpolation subdivision method to generate new virtual edge points and new face points of the extraordinary points of quadrilateral mesh. We also provide numerical examples to assess the validity of various interpolation methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math11020486</doi><orcidid>https://orcid.org/0000-0002-0259-440X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2023-01, Vol.11 (2), p.486
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f718d6358ee74cf7a61aac14f788293f
source Publicly Available Content Database
subjects Approximation
Computer graphics
Design
extraordinary point
Interpolation
non-uniform subdivision
Polynomials
Quadrilaterals
surface subdivision
Tensors
ternary
title Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial-Based%20Non-Uniform%20Ternary%20Interpolation%20Surface%20Subdivision%20on%20Quadrilateral%20Mesh&rft.jtitle=Mathematics%20(Basel)&rft.au=Peng,%20Kaijun&rft.date=2023-01-01&rft.volume=11&rft.issue=2&rft.spage=486&rft.pages=486-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math11020486&rft_dat=%3Cproquest_doaj_%3E2767235814%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-5e05fc04abe3584f13b947bbeed8e8efe4020fa343a3c2da1ded4bcdc82da5e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767235814&rft_id=info:pmid/&rfr_iscdi=true