Loading…
Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh
For non-uniform control polygons, a parameterized four-point interpolation curve ternary subdivision scheme is proposed, and its convergence and continuity are demonstrated. Following curve subdivision, a non-uniform interpolation surface ternary subdivision on regular quadrilateral meshes is propos...
Saved in:
Published in: | Mathematics (Basel) 2023-01, Vol.11 (2), p.486 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c254t-5e05fc04abe3584f13b947bbeed8e8efe4020fa343a3c2da1ded4bcdc82da5e73 |
container_end_page | |
container_issue | 2 |
container_start_page | 486 |
container_title | Mathematics (Basel) |
container_volume | 11 |
creator | Peng, Kaijun Tan, Jieqing Zhang, Li |
description | For non-uniform control polygons, a parameterized four-point interpolation curve ternary subdivision scheme is proposed, and its convergence and continuity are demonstrated. Following curve subdivision, a non-uniform interpolation surface ternary subdivision on regular quadrilateral meshes is proposed by applying the tensor product method. Analyses were conducted on the updating rules of parameters, proving that the limit surface is continuous. In this paper, we present a novel interpolation subdivision method to generate new virtual edge points and new face points of the extraordinary points of quadrilateral mesh. We also provide numerical examples to assess the validity of various interpolation methods. |
doi_str_mv | 10.3390/math11020486 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f718d6358ee74cf7a61aac14f788293f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f718d6358ee74cf7a61aac14f788293f</doaj_id><sourcerecordid>2767235814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-5e05fc04abe3584f13b947bbeed8e8efe4020fa343a3c2da1ded4bcdc82da5e73</originalsourceid><addsrcrecordid>eNpNUdtKxDAQLaLgor75AQVfrTaXNumjLl4W1hvqmxCmyUSztM2atIJ_b3RFDAOTTM6cM5csOyTlCWNNedrD-EZISUsu661sRikVhUgf2__uu9lBjKsynYYwyZtZ9nLvu8_B9w664hwimvzWD8Xz4KwPff6EYYDwmS-GEcPadzA6P-SPU7CgMfnWuA8Xv2PJHiYwwSUMBujyG4xv-9mOhS7iwa_fy54vL57m18Xy7moxP1sWmlZ8LCosK6tLDi2ySnJLWNtw0baIRqJEizx1ZYFxBkxTA8Sg4a02WqZHhYLtZYsNr_GwUuvg-lS08uDUT8CHVwVhdLpDZQWRpk4yiIJrK6AmAJpwK6SkDbOJ62jDtQ7-fcI4qpWf0hS6qKioBU2phCfU8Qalg48xoP1TJaX6Xof6vw72BeBaf08</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767235814</pqid></control><display><type>article</type><title>Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh</title><source>Publicly Available Content Database</source><creator>Peng, Kaijun ; Tan, Jieqing ; Zhang, Li</creator><creatorcontrib>Peng, Kaijun ; Tan, Jieqing ; Zhang, Li</creatorcontrib><description>For non-uniform control polygons, a parameterized four-point interpolation curve ternary subdivision scheme is proposed, and its convergence and continuity are demonstrated. Following curve subdivision, a non-uniform interpolation surface ternary subdivision on regular quadrilateral meshes is proposed by applying the tensor product method. Analyses were conducted on the updating rules of parameters, proving that the limit surface is continuous. In this paper, we present a novel interpolation subdivision method to generate new virtual edge points and new face points of the extraordinary points of quadrilateral mesh. We also provide numerical examples to assess the validity of various interpolation methods.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math11020486</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; Computer graphics ; Design ; extraordinary point ; Interpolation ; non-uniform subdivision ; Polynomials ; Quadrilaterals ; surface subdivision ; Tensors ; ternary</subject><ispartof>Mathematics (Basel), 2023-01, Vol.11 (2), p.486</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-5e05fc04abe3584f13b947bbeed8e8efe4020fa343a3c2da1ded4bcdc82da5e73</cites><orcidid>0000-0002-0259-440X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767235814/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767235814?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Peng, Kaijun</creatorcontrib><creatorcontrib>Tan, Jieqing</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><title>Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh</title><title>Mathematics (Basel)</title><description>For non-uniform control polygons, a parameterized four-point interpolation curve ternary subdivision scheme is proposed, and its convergence and continuity are demonstrated. Following curve subdivision, a non-uniform interpolation surface ternary subdivision on regular quadrilateral meshes is proposed by applying the tensor product method. Analyses were conducted on the updating rules of parameters, proving that the limit surface is continuous. In this paper, we present a novel interpolation subdivision method to generate new virtual edge points and new face points of the extraordinary points of quadrilateral mesh. We also provide numerical examples to assess the validity of various interpolation methods.</description><subject>Approximation</subject><subject>Computer graphics</subject><subject>Design</subject><subject>extraordinary point</subject><subject>Interpolation</subject><subject>non-uniform subdivision</subject><subject>Polynomials</subject><subject>Quadrilaterals</subject><subject>surface subdivision</subject><subject>Tensors</subject><subject>ternary</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKxDAQLaLgor75AQVfrTaXNumjLl4W1hvqmxCmyUSztM2atIJ_b3RFDAOTTM6cM5csOyTlCWNNedrD-EZISUsu661sRikVhUgf2__uu9lBjKsynYYwyZtZ9nLvu8_B9w664hwimvzWD8Xz4KwPff6EYYDwmS-GEcPadzA6P-SPU7CgMfnWuA8Xv2PJHiYwwSUMBujyG4xv-9mOhS7iwa_fy54vL57m18Xy7moxP1sWmlZ8LCosK6tLDi2ySnJLWNtw0baIRqJEizx1ZYFxBkxTA8Sg4a02WqZHhYLtZYsNr_GwUuvg-lS08uDUT8CHVwVhdLpDZQWRpk4yiIJrK6AmAJpwK6SkDbOJ62jDtQ7-fcI4qpWf0hS6qKioBU2phCfU8Qalg48xoP1TJaX6Xof6vw72BeBaf08</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Peng, Kaijun</creator><creator>Tan, Jieqing</creator><creator>Zhang, Li</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0259-440X</orcidid></search><sort><creationdate>20230101</creationdate><title>Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh</title><author>Peng, Kaijun ; Tan, Jieqing ; Zhang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-5e05fc04abe3584f13b947bbeed8e8efe4020fa343a3c2da1ded4bcdc82da5e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Computer graphics</topic><topic>Design</topic><topic>extraordinary point</topic><topic>Interpolation</topic><topic>non-uniform subdivision</topic><topic>Polynomials</topic><topic>Quadrilaterals</topic><topic>surface subdivision</topic><topic>Tensors</topic><topic>ternary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Kaijun</creatorcontrib><creatorcontrib>Tan, Jieqing</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Kaijun</au><au>Tan, Jieqing</au><au>Zhang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh</atitle><jtitle>Mathematics (Basel)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>486</spage><pages>486-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>For non-uniform control polygons, a parameterized four-point interpolation curve ternary subdivision scheme is proposed, and its convergence and continuity are demonstrated. Following curve subdivision, a non-uniform interpolation surface ternary subdivision on regular quadrilateral meshes is proposed by applying the tensor product method. Analyses were conducted on the updating rules of parameters, proving that the limit surface is continuous. In this paper, we present a novel interpolation subdivision method to generate new virtual edge points and new face points of the extraordinary points of quadrilateral mesh. We also provide numerical examples to assess the validity of various interpolation methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math11020486</doi><orcidid>https://orcid.org/0000-0002-0259-440X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2023-01, Vol.11 (2), p.486 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f718d6358ee74cf7a61aac14f788293f |
source | Publicly Available Content Database |
subjects | Approximation Computer graphics Design extraordinary point Interpolation non-uniform subdivision Polynomials Quadrilaterals surface subdivision Tensors ternary |
title | Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial-Based%20Non-Uniform%20Ternary%20Interpolation%20Surface%20Subdivision%20on%20Quadrilateral%20Mesh&rft.jtitle=Mathematics%20(Basel)&rft.au=Peng,%20Kaijun&rft.date=2023-01-01&rft.volume=11&rft.issue=2&rft.spage=486&rft.pages=486-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math11020486&rft_dat=%3Cproquest_doaj_%3E2767235814%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-5e05fc04abe3584f13b947bbeed8e8efe4020fa343a3c2da1ded4bcdc82da5e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767235814&rft_id=info:pmid/&rfr_iscdi=true |