Loading…
DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method
It is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor...
Saved in:
Published in: | International journal of molecular sciences 2021-05, Vol.22 (11), p.5510 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3 |
container_end_page | |
container_issue | 11 |
container_start_page | 5510 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Hendrix, Samuel Godfrey Chang, Kuan Y. Ryu, Zeezoo Xie, Zhong-Ru |
description | It is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor accuracy. Using 3D coordinates and the atom-type of surface protein atom as the input, we trained and tested a deep learning model to predict how likely a voxel on the protein surface is to be a DNA-binding site. Based on three different evaluation datasets, the results show that our model not only outperforms several previous methods on two commonly used datasets, but also demonstrates its robust performance to be consistent among the three datasets. The visualized prediction outcomes show that the binding sites are also mostly located in correct regions. We successfully built a deep learning model to predict the DNA binding sites on target proteins. It demonstrates that 3D protein structures plus atom-type information on protein surfaces can be used to predict the potential binding sites on a protein. This approach should be further extended to develop the binding sites of other important biological molecules. |
doi_str_mv | 10.3390/ijms22115510 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f734cd8456c945f6bbe9bce474025b60</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f734cd8456c945f6bbe9bce474025b60</doaj_id><sourcerecordid>2536495428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3</originalsourceid><addsrcrecordid>eNpVkUlPwzAQhS0EYr_xA3LkQMG7Yw5IlLJUKosEnC3HnhRXaVzsFIl_T0oRgtPMvHn65kmD0BHBp4xpfBZm80wpIUIQvIF2Cad0gLFUm3_6HbSX8wxjyqjQ22iHcayYwmIXDUcAi9H4-fq8GD1cFsPQ-tBOi-fQQfGUwAfXhdgWr3ml2mLlLiZgU7ua76F7i_4AbdW2yXD4U_fR6831y9XdYPJ4O766nAwcp6ob9GFLLWnFeMkIaFYS5aHPzGqGhZNaCM-kdgp8LYkiuGaSCsAUQDlQtWf7aLzm-mhnZpHC3KZPE20w30JMU2NTF1wDplaMO19yIZ3mopZVBbpywBXHVFQS96yLNWuxrObgHbRdss0_6P9NG97MNH6YkmhFie4Bxz-AFN-XkDszD9lB09gW4jIbKpjkWnBa9taTtdWlmHOC-vcMwWb1QvP3hewLD4KLAg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536495428</pqid></control><display><type>article</type><title>DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Hendrix, Samuel Godfrey ; Chang, Kuan Y. ; Ryu, Zeezoo ; Xie, Zhong-Ru</creator><creatorcontrib>Hendrix, Samuel Godfrey ; Chang, Kuan Y. ; Ryu, Zeezoo ; Xie, Zhong-Ru</creatorcontrib><description>It is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor accuracy. Using 3D coordinates and the atom-type of surface protein atom as the input, we trained and tested a deep learning model to predict how likely a voxel on the protein surface is to be a DNA-binding site. Based on three different evaluation datasets, the results show that our model not only outperforms several previous methods on two commonly used datasets, but also demonstrates its robust performance to be consistent among the three datasets. The visualized prediction outcomes show that the binding sites are also mostly located in correct regions. We successfully built a deep learning model to predict the DNA binding sites on target proteins. It demonstrates that 3D protein structures plus atom-type information on protein surfaces can be used to predict the potential binding sites on a protein. This approach should be further extended to develop the binding sites of other important biological molecules.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22115510</identifier><identifier>PMID: 34073705</identifier><language>eng</language><publisher>MDPI</publisher><subject>binding site prediction ; convolutional neural network ; deep learning ; drug design ; protein–DNA interaction ; proteome</subject><ispartof>International journal of molecular sciences, 2021-05, Vol.22 (11), p.5510</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3</citedby><cites>FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3</cites><orcidid>0000-0002-4940-5899 ; 0000-0002-2262-5218 ; 0000-0002-1539-5100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197219/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197219/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids></links><search><creatorcontrib>Hendrix, Samuel Godfrey</creatorcontrib><creatorcontrib>Chang, Kuan Y.</creatorcontrib><creatorcontrib>Ryu, Zeezoo</creatorcontrib><creatorcontrib>Xie, Zhong-Ru</creatorcontrib><title>DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method</title><title>International journal of molecular sciences</title><description>It is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor accuracy. Using 3D coordinates and the atom-type of surface protein atom as the input, we trained and tested a deep learning model to predict how likely a voxel on the protein surface is to be a DNA-binding site. Based on three different evaluation datasets, the results show that our model not only outperforms several previous methods on two commonly used datasets, but also demonstrates its robust performance to be consistent among the three datasets. The visualized prediction outcomes show that the binding sites are also mostly located in correct regions. We successfully built a deep learning model to predict the DNA binding sites on target proteins. It demonstrates that 3D protein structures plus atom-type information on protein surfaces can be used to predict the potential binding sites on a protein. This approach should be further extended to develop the binding sites of other important biological molecules.</description><subject>binding site prediction</subject><subject>convolutional neural network</subject><subject>deep learning</subject><subject>drug design</subject><subject>protein–DNA interaction</subject><subject>proteome</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUlPwzAQhS0EYr_xA3LkQMG7Yw5IlLJUKosEnC3HnhRXaVzsFIl_T0oRgtPMvHn65kmD0BHBp4xpfBZm80wpIUIQvIF2Cad0gLFUm3_6HbSX8wxjyqjQ22iHcayYwmIXDUcAi9H4-fq8GD1cFsPQ-tBOi-fQQfGUwAfXhdgWr3ml2mLlLiZgU7ua76F7i_4AbdW2yXD4U_fR6831y9XdYPJ4O766nAwcp6ob9GFLLWnFeMkIaFYS5aHPzGqGhZNaCM-kdgp8LYkiuGaSCsAUQDlQtWf7aLzm-mhnZpHC3KZPE20w30JMU2NTF1wDplaMO19yIZ3mopZVBbpywBXHVFQS96yLNWuxrObgHbRdss0_6P9NG97MNH6YkmhFie4Bxz-AFN-XkDszD9lB09gW4jIbKpjkWnBa9taTtdWlmHOC-vcMwWb1QvP3hewLD4KLAg</recordid><startdate>20210524</startdate><enddate>20210524</enddate><creator>Hendrix, Samuel Godfrey</creator><creator>Chang, Kuan Y.</creator><creator>Ryu, Zeezoo</creator><creator>Xie, Zhong-Ru</creator><general>MDPI</general><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4940-5899</orcidid><orcidid>https://orcid.org/0000-0002-2262-5218</orcidid><orcidid>https://orcid.org/0000-0002-1539-5100</orcidid></search><sort><creationdate>20210524</creationdate><title>DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method</title><author>Hendrix, Samuel Godfrey ; Chang, Kuan Y. ; Ryu, Zeezoo ; Xie, Zhong-Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>binding site prediction</topic><topic>convolutional neural network</topic><topic>deep learning</topic><topic>drug design</topic><topic>protein–DNA interaction</topic><topic>proteome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendrix, Samuel Godfrey</creatorcontrib><creatorcontrib>Chang, Kuan Y.</creatorcontrib><creatorcontrib>Ryu, Zeezoo</creatorcontrib><creatorcontrib>Xie, Zhong-Ru</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendrix, Samuel Godfrey</au><au>Chang, Kuan Y.</au><au>Ryu, Zeezoo</au><au>Xie, Zhong-Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method</atitle><jtitle>International journal of molecular sciences</jtitle><date>2021-05-24</date><risdate>2021</risdate><volume>22</volume><issue>11</issue><spage>5510</spage><pages>5510-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>It is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor accuracy. Using 3D coordinates and the atom-type of surface protein atom as the input, we trained and tested a deep learning model to predict how likely a voxel on the protein surface is to be a DNA-binding site. Based on three different evaluation datasets, the results show that our model not only outperforms several previous methods on two commonly used datasets, but also demonstrates its robust performance to be consistent among the three datasets. The visualized prediction outcomes show that the binding sites are also mostly located in correct regions. We successfully built a deep learning model to predict the DNA binding sites on target proteins. It demonstrates that 3D protein structures plus atom-type information on protein surfaces can be used to predict the potential binding sites on a protein. This approach should be further extended to develop the binding sites of other important biological molecules.</abstract><pub>MDPI</pub><pmid>34073705</pmid><doi>10.3390/ijms22115510</doi><orcidid>https://orcid.org/0000-0002-4940-5899</orcidid><orcidid>https://orcid.org/0000-0002-2262-5218</orcidid><orcidid>https://orcid.org/0000-0002-1539-5100</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-05, Vol.22 (11), p.5510 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f734cd8456c945f6bbe9bce474025b60 |
source | Publicly Available Content Database; PubMed Central |
subjects | binding site prediction convolutional neural network deep learning drug design protein–DNA interaction proteome |
title | DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepDISE:%20DNA%20Binding%20Site%20Prediction%20Using%20a%20Deep%20Learning%20Method&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Hendrix,%20Samuel%20Godfrey&rft.date=2021-05-24&rft.volume=22&rft.issue=11&rft.spage=5510&rft.pages=5510-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22115510&rft_dat=%3Cproquest_doaj_%3E2536495428%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536495428&rft_id=info:pmid/34073705&rfr_iscdi=true |