Loading…

DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method

It is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2021-05, Vol.22 (11), p.5510
Main Authors: Hendrix, Samuel Godfrey, Chang, Kuan Y., Ryu, Zeezoo, Xie, Zhong-Ru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3
cites cdi_FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3
container_end_page
container_issue 11
container_start_page 5510
container_title International journal of molecular sciences
container_volume 22
creator Hendrix, Samuel Godfrey
Chang, Kuan Y.
Ryu, Zeezoo
Xie, Zhong-Ru
description It is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor accuracy. Using 3D coordinates and the atom-type of surface protein atom as the input, we trained and tested a deep learning model to predict how likely a voxel on the protein surface is to be a DNA-binding site. Based on three different evaluation datasets, the results show that our model not only outperforms several previous methods on two commonly used datasets, but also demonstrates its robust performance to be consistent among the three datasets. The visualized prediction outcomes show that the binding sites are also mostly located in correct regions. We successfully built a deep learning model to predict the DNA binding sites on target proteins. It demonstrates that 3D protein structures plus atom-type information on protein surfaces can be used to predict the potential binding sites on a protein. This approach should be further extended to develop the binding sites of other important biological molecules.
doi_str_mv 10.3390/ijms22115510
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f734cd8456c945f6bbe9bce474025b60</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f734cd8456c945f6bbe9bce474025b60</doaj_id><sourcerecordid>2536495428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3</originalsourceid><addsrcrecordid>eNpVkUlPwzAQhS0EYr_xA3LkQMG7Yw5IlLJUKosEnC3HnhRXaVzsFIl_T0oRgtPMvHn65kmD0BHBp4xpfBZm80wpIUIQvIF2Cad0gLFUm3_6HbSX8wxjyqjQ22iHcayYwmIXDUcAi9H4-fq8GD1cFsPQ-tBOi-fQQfGUwAfXhdgWr3ml2mLlLiZgU7ua76F7i_4AbdW2yXD4U_fR6831y9XdYPJ4O766nAwcp6ob9GFLLWnFeMkIaFYS5aHPzGqGhZNaCM-kdgp8LYkiuGaSCsAUQDlQtWf7aLzm-mhnZpHC3KZPE20w30JMU2NTF1wDplaMO19yIZ3mopZVBbpywBXHVFQS96yLNWuxrObgHbRdss0_6P9NG97MNH6YkmhFie4Bxz-AFN-XkDszD9lB09gW4jIbKpjkWnBa9taTtdWlmHOC-vcMwWb1QvP3hewLD4KLAg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536495428</pqid></control><display><type>article</type><title>DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Hendrix, Samuel Godfrey ; Chang, Kuan Y. ; Ryu, Zeezoo ; Xie, Zhong-Ru</creator><creatorcontrib>Hendrix, Samuel Godfrey ; Chang, Kuan Y. ; Ryu, Zeezoo ; Xie, Zhong-Ru</creatorcontrib><description>It is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor accuracy. Using 3D coordinates and the atom-type of surface protein atom as the input, we trained and tested a deep learning model to predict how likely a voxel on the protein surface is to be a DNA-binding site. Based on three different evaluation datasets, the results show that our model not only outperforms several previous methods on two commonly used datasets, but also demonstrates its robust performance to be consistent among the three datasets. The visualized prediction outcomes show that the binding sites are also mostly located in correct regions. We successfully built a deep learning model to predict the DNA binding sites on target proteins. It demonstrates that 3D protein structures plus atom-type information on protein surfaces can be used to predict the potential binding sites on a protein. This approach should be further extended to develop the binding sites of other important biological molecules.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22115510</identifier><identifier>PMID: 34073705</identifier><language>eng</language><publisher>MDPI</publisher><subject>binding site prediction ; convolutional neural network ; deep learning ; drug design ; protein–DNA interaction ; proteome</subject><ispartof>International journal of molecular sciences, 2021-05, Vol.22 (11), p.5510</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3</citedby><cites>FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3</cites><orcidid>0000-0002-4940-5899 ; 0000-0002-2262-5218 ; 0000-0002-1539-5100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197219/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197219/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids></links><search><creatorcontrib>Hendrix, Samuel Godfrey</creatorcontrib><creatorcontrib>Chang, Kuan Y.</creatorcontrib><creatorcontrib>Ryu, Zeezoo</creatorcontrib><creatorcontrib>Xie, Zhong-Ru</creatorcontrib><title>DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method</title><title>International journal of molecular sciences</title><description>It is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor accuracy. Using 3D coordinates and the atom-type of surface protein atom as the input, we trained and tested a deep learning model to predict how likely a voxel on the protein surface is to be a DNA-binding site. Based on three different evaluation datasets, the results show that our model not only outperforms several previous methods on two commonly used datasets, but also demonstrates its robust performance to be consistent among the three datasets. The visualized prediction outcomes show that the binding sites are also mostly located in correct regions. We successfully built a deep learning model to predict the DNA binding sites on target proteins. It demonstrates that 3D protein structures plus atom-type information on protein surfaces can be used to predict the potential binding sites on a protein. This approach should be further extended to develop the binding sites of other important biological molecules.</description><subject>binding site prediction</subject><subject>convolutional neural network</subject><subject>deep learning</subject><subject>drug design</subject><subject>protein–DNA interaction</subject><subject>proteome</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUlPwzAQhS0EYr_xA3LkQMG7Yw5IlLJUKosEnC3HnhRXaVzsFIl_T0oRgtPMvHn65kmD0BHBp4xpfBZm80wpIUIQvIF2Cad0gLFUm3_6HbSX8wxjyqjQ22iHcayYwmIXDUcAi9H4-fq8GD1cFsPQ-tBOi-fQQfGUwAfXhdgWr3ml2mLlLiZgU7ua76F7i_4AbdW2yXD4U_fR6831y9XdYPJ4O766nAwcp6ob9GFLLWnFeMkIaFYS5aHPzGqGhZNaCM-kdgp8LYkiuGaSCsAUQDlQtWf7aLzm-mhnZpHC3KZPE20w30JMU2NTF1wDplaMO19yIZ3mopZVBbpywBXHVFQS96yLNWuxrObgHbRdss0_6P9NG97MNH6YkmhFie4Bxz-AFN-XkDszD9lB09gW4jIbKpjkWnBa9taTtdWlmHOC-vcMwWb1QvP3hewLD4KLAg</recordid><startdate>20210524</startdate><enddate>20210524</enddate><creator>Hendrix, Samuel Godfrey</creator><creator>Chang, Kuan Y.</creator><creator>Ryu, Zeezoo</creator><creator>Xie, Zhong-Ru</creator><general>MDPI</general><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4940-5899</orcidid><orcidid>https://orcid.org/0000-0002-2262-5218</orcidid><orcidid>https://orcid.org/0000-0002-1539-5100</orcidid></search><sort><creationdate>20210524</creationdate><title>DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method</title><author>Hendrix, Samuel Godfrey ; Chang, Kuan Y. ; Ryu, Zeezoo ; Xie, Zhong-Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>binding site prediction</topic><topic>convolutional neural network</topic><topic>deep learning</topic><topic>drug design</topic><topic>protein–DNA interaction</topic><topic>proteome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendrix, Samuel Godfrey</creatorcontrib><creatorcontrib>Chang, Kuan Y.</creatorcontrib><creatorcontrib>Ryu, Zeezoo</creatorcontrib><creatorcontrib>Xie, Zhong-Ru</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendrix, Samuel Godfrey</au><au>Chang, Kuan Y.</au><au>Ryu, Zeezoo</au><au>Xie, Zhong-Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method</atitle><jtitle>International journal of molecular sciences</jtitle><date>2021-05-24</date><risdate>2021</risdate><volume>22</volume><issue>11</issue><spage>5510</spage><pages>5510-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>It is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor accuracy. Using 3D coordinates and the atom-type of surface protein atom as the input, we trained and tested a deep learning model to predict how likely a voxel on the protein surface is to be a DNA-binding site. Based on three different evaluation datasets, the results show that our model not only outperforms several previous methods on two commonly used datasets, but also demonstrates its robust performance to be consistent among the three datasets. The visualized prediction outcomes show that the binding sites are also mostly located in correct regions. We successfully built a deep learning model to predict the DNA binding sites on target proteins. It demonstrates that 3D protein structures plus atom-type information on protein surfaces can be used to predict the potential binding sites on a protein. This approach should be further extended to develop the binding sites of other important biological molecules.</abstract><pub>MDPI</pub><pmid>34073705</pmid><doi>10.3390/ijms22115510</doi><orcidid>https://orcid.org/0000-0002-4940-5899</orcidid><orcidid>https://orcid.org/0000-0002-2262-5218</orcidid><orcidid>https://orcid.org/0000-0002-1539-5100</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-05, Vol.22 (11), p.5510
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f734cd8456c945f6bbe9bce474025b60
source Publicly Available Content Database; PubMed Central
subjects binding site prediction
convolutional neural network
deep learning
drug design
protein–DNA interaction
proteome
title DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepDISE:%20DNA%20Binding%20Site%20Prediction%20Using%20a%20Deep%20Learning%20Method&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Hendrix,%20Samuel%20Godfrey&rft.date=2021-05-24&rft.volume=22&rft.issue=11&rft.spage=5510&rft.pages=5510-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22115510&rft_dat=%3Cproquest_doaj_%3E2536495428%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-3398962b34831e93817de5103f305c6955d369c7edf61710f3625e02ee7ce7fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536495428&rft_id=info:pmid/34073705&rfr_iscdi=true