Loading…
Control of filament length by a depolymerizing gradient
Cells assemble microns-long filamentous structures from protein monomers that are nanometers in size. These structures are often highly dynamic, yet in order for them to function properly, cells maintain them at a precise length. Here we investigate length-dependent depolymerization as a mechanism o...
Saved in:
Published in: | PLoS computational biology 2020-12, Vol.16 (12), p.e1008440-e1008440 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43 |
container_end_page | e1008440 |
container_issue | 12 |
container_start_page | e1008440 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Datta, Arnab Harbage, David Kondev, Jane |
description | Cells assemble microns-long filamentous structures from protein monomers that are nanometers in size. These structures are often highly dynamic, yet in order for them to function properly, cells maintain them at a precise length. Here we investigate length-dependent depolymerization as a mechanism of length control. This mechanism has been recently proposed for flagellar length control in the single cell organisms Chlamydomonas and Giardia. Length dependent depolymerization can arise from a concentration gradient of a depolymerizing protein, such as kinesin-13 in Giardia, along the length of the flagellum. Two possible scenarios are considered: a linear and an exponential gradient of depolymerizing proteins. We compute analytically the probability distributions of filament lengths for both scenarios and show how these distributions are controlled by key biochemical parameters through a dimensionless number that we identify. In Chlamydomonas cells, the assembly dynamics of its two flagella are coupled via a shared pool of molecular components that are in limited supply, and so we investigate the effect of a limiting monomer pool on the length distributions. Finally, we compare our calculations to experiments. While the computed mean lengths are consistent with observations, the noise is two orders of magnitude smaller than the observed length fluctuations. |
doi_str_mv | 10.1371/journal.pcbi.1008440 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f7448db23942455892f8f2a2c7f33cbb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f7448db23942455892f8f2a2c7f33cbb</doaj_id><sourcerecordid>2467618789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43</originalsourceid><addsrcrecordid>eNpVkU9vGyEQxVHVqnGcfIOq2mMvdllgF7hUiqy0jWSpl-aMhn9rLHZx2XUk59OHxK4VnxiY937M6CH0pcbLmvL6-zbt8wBxuTM6LGuMBWP4A5rVTUMXnDbi47v6Cl2P4xbjUsr2M7qilPCmkWKG-CoNU06xSr7yIULvhqmKbuimTaUPFVTW7VI89C6H5zB0VZfBhqK5QZ88xNHdns45evx5_3f1e7H-8-thdbdeGMbZtDCEGa8l9UZy4rGmFoCDFFw666UkrWibFkzrsdU1KzfdYAEGnCw-6xido4cj1ybYql0OPeSDShDU20PKnYI8BROd8pwxYTWhkhHWlE2JF54AMdxTarQurB9H1m6ve2dNWSNDvIBedoawUV16UryQcUsK4NsJkNO_vRsn1YfRuBhhcGk_KsJa3taCC1mk7Cg1OY1jdv78TY3Va37qlJ96zU-d8iu2r-9HPJv-B0ZfAFbRm44</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467618789</pqid></control><display><type>article</type><title>Control of filament length by a depolymerizing gradient</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Datta, Arnab ; Harbage, David ; Kondev, Jane</creator><contributor>Meier-Schellersheim, Martin</contributor><creatorcontrib>Datta, Arnab ; Harbage, David ; Kondev, Jane ; Meier-Schellersheim, Martin</creatorcontrib><description>Cells assemble microns-long filamentous structures from protein monomers that are nanometers in size. These structures are often highly dynamic, yet in order for them to function properly, cells maintain them at a precise length. Here we investigate length-dependent depolymerization as a mechanism of length control. This mechanism has been recently proposed for flagellar length control in the single cell organisms Chlamydomonas and Giardia. Length dependent depolymerization can arise from a concentration gradient of a depolymerizing protein, such as kinesin-13 in Giardia, along the length of the flagellum. Two possible scenarios are considered: a linear and an exponential gradient of depolymerizing proteins. We compute analytically the probability distributions of filament lengths for both scenarios and show how these distributions are controlled by key biochemical parameters through a dimensionless number that we identify. In Chlamydomonas cells, the assembly dynamics of its two flagella are coupled via a shared pool of molecular components that are in limited supply, and so we investigate the effect of a limiting monomer pool on the length distributions. Finally, we compare our calculations to experiments. While the computed mean lengths are consistent with observations, the noise is two orders of magnitude smaller than the observed length fluctuations.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008440</identifier><identifier>PMID: 33275598</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biological Transport ; Biology and Life Sciences ; Chlamydomonas - metabolism ; Flagella - metabolism ; Giardia - metabolism ; Kinesin - metabolism ; Medicine and Health Sciences ; Physical Sciences ; Polymerization</subject><ispartof>PLoS computational biology, 2020-12, Vol.16 (12), p.e1008440-e1008440</ispartof><rights>2020 Datta et al 2020 Datta et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43</citedby><cites>FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43</cites><orcidid>0000-0002-7474-1720 ; 0000-0001-7522-7144 ; 0000-0003-3288-5926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744062/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744062/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33275598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Meier-Schellersheim, Martin</contributor><creatorcontrib>Datta, Arnab</creatorcontrib><creatorcontrib>Harbage, David</creatorcontrib><creatorcontrib>Kondev, Jane</creatorcontrib><title>Control of filament length by a depolymerizing gradient</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Cells assemble microns-long filamentous structures from protein monomers that are nanometers in size. These structures are often highly dynamic, yet in order for them to function properly, cells maintain them at a precise length. Here we investigate length-dependent depolymerization as a mechanism of length control. This mechanism has been recently proposed for flagellar length control in the single cell organisms Chlamydomonas and Giardia. Length dependent depolymerization can arise from a concentration gradient of a depolymerizing protein, such as kinesin-13 in Giardia, along the length of the flagellum. Two possible scenarios are considered: a linear and an exponential gradient of depolymerizing proteins. We compute analytically the probability distributions of filament lengths for both scenarios and show how these distributions are controlled by key biochemical parameters through a dimensionless number that we identify. In Chlamydomonas cells, the assembly dynamics of its two flagella are coupled via a shared pool of molecular components that are in limited supply, and so we investigate the effect of a limiting monomer pool on the length distributions. Finally, we compare our calculations to experiments. While the computed mean lengths are consistent with observations, the noise is two orders of magnitude smaller than the observed length fluctuations.</description><subject>Biological Transport</subject><subject>Biology and Life Sciences</subject><subject>Chlamydomonas - metabolism</subject><subject>Flagella - metabolism</subject><subject>Giardia - metabolism</subject><subject>Kinesin - metabolism</subject><subject>Medicine and Health Sciences</subject><subject>Physical Sciences</subject><subject>Polymerization</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU9vGyEQxVHVqnGcfIOq2mMvdllgF7hUiqy0jWSpl-aMhn9rLHZx2XUk59OHxK4VnxiY937M6CH0pcbLmvL6-zbt8wBxuTM6LGuMBWP4A5rVTUMXnDbi47v6Cl2P4xbjUsr2M7qilPCmkWKG-CoNU06xSr7yIULvhqmKbuimTaUPFVTW7VI89C6H5zB0VZfBhqK5QZ88xNHdns45evx5_3f1e7H-8-thdbdeGMbZtDCEGa8l9UZy4rGmFoCDFFw666UkrWibFkzrsdU1KzfdYAEGnCw-6xido4cj1ybYql0OPeSDShDU20PKnYI8BROd8pwxYTWhkhHWlE2JF54AMdxTarQurB9H1m6ve2dNWSNDvIBedoawUV16UryQcUsK4NsJkNO_vRsn1YfRuBhhcGk_KsJa3taCC1mk7Cg1OY1jdv78TY3Va37qlJ96zU-d8iu2r-9HPJv-B0ZfAFbRm44</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Datta, Arnab</creator><creator>Harbage, David</creator><creator>Kondev, Jane</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7474-1720</orcidid><orcidid>https://orcid.org/0000-0001-7522-7144</orcidid><orcidid>https://orcid.org/0000-0003-3288-5926</orcidid></search><sort><creationdate>20201201</creationdate><title>Control of filament length by a depolymerizing gradient</title><author>Datta, Arnab ; Harbage, David ; Kondev, Jane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Transport</topic><topic>Biology and Life Sciences</topic><topic>Chlamydomonas - metabolism</topic><topic>Flagella - metabolism</topic><topic>Giardia - metabolism</topic><topic>Kinesin - metabolism</topic><topic>Medicine and Health Sciences</topic><topic>Physical Sciences</topic><topic>Polymerization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datta, Arnab</creatorcontrib><creatorcontrib>Harbage, David</creatorcontrib><creatorcontrib>Kondev, Jane</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datta, Arnab</au><au>Harbage, David</au><au>Kondev, Jane</au><au>Meier-Schellersheim, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of filament length by a depolymerizing gradient</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>16</volume><issue>12</issue><spage>e1008440</spage><epage>e1008440</epage><pages>e1008440-e1008440</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Cells assemble microns-long filamentous structures from protein monomers that are nanometers in size. These structures are often highly dynamic, yet in order for them to function properly, cells maintain them at a precise length. Here we investigate length-dependent depolymerization as a mechanism of length control. This mechanism has been recently proposed for flagellar length control in the single cell organisms Chlamydomonas and Giardia. Length dependent depolymerization can arise from a concentration gradient of a depolymerizing protein, such as kinesin-13 in Giardia, along the length of the flagellum. Two possible scenarios are considered: a linear and an exponential gradient of depolymerizing proteins. We compute analytically the probability distributions of filament lengths for both scenarios and show how these distributions are controlled by key biochemical parameters through a dimensionless number that we identify. In Chlamydomonas cells, the assembly dynamics of its two flagella are coupled via a shared pool of molecular components that are in limited supply, and so we investigate the effect of a limiting monomer pool on the length distributions. Finally, we compare our calculations to experiments. While the computed mean lengths are consistent with observations, the noise is two orders of magnitude smaller than the observed length fluctuations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33275598</pmid><doi>10.1371/journal.pcbi.1008440</doi><orcidid>https://orcid.org/0000-0002-7474-1720</orcidid><orcidid>https://orcid.org/0000-0001-7522-7144</orcidid><orcidid>https://orcid.org/0000-0003-3288-5926</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-12, Vol.16 (12), p.e1008440-e1008440 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f7448db23942455892f8f2a2c7f33cbb |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Biological Transport Biology and Life Sciences Chlamydomonas - metabolism Flagella - metabolism Giardia - metabolism Kinesin - metabolism Medicine and Health Sciences Physical Sciences Polymerization |
title | Control of filament length by a depolymerizing gradient |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20filament%20length%20by%20a%20depolymerizing%20gradient&rft.jtitle=PLoS%20computational%20biology&rft.au=Datta,%20Arnab&rft.date=2020-12-01&rft.volume=16&rft.issue=12&rft.spage=e1008440&rft.epage=e1008440&rft.pages=e1008440-e1008440&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008440&rft_dat=%3Cproquest_doaj_%3E2467618789%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2467618789&rft_id=info:pmid/33275598&rfr_iscdi=true |