Loading…

Control of filament length by a depolymerizing gradient

Cells assemble microns-long filamentous structures from protein monomers that are nanometers in size. These structures are often highly dynamic, yet in order for them to function properly, cells maintain them at a precise length. Here we investigate length-dependent depolymerization as a mechanism o...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2020-12, Vol.16 (12), p.e1008440-e1008440
Main Authors: Datta, Arnab, Harbage, David, Kondev, Jane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43
cites cdi_FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43
container_end_page e1008440
container_issue 12
container_start_page e1008440
container_title PLoS computational biology
container_volume 16
creator Datta, Arnab
Harbage, David
Kondev, Jane
description Cells assemble microns-long filamentous structures from protein monomers that are nanometers in size. These structures are often highly dynamic, yet in order for them to function properly, cells maintain them at a precise length. Here we investigate length-dependent depolymerization as a mechanism of length control. This mechanism has been recently proposed for flagellar length control in the single cell organisms Chlamydomonas and Giardia. Length dependent depolymerization can arise from a concentration gradient of a depolymerizing protein, such as kinesin-13 in Giardia, along the length of the flagellum. Two possible scenarios are considered: a linear and an exponential gradient of depolymerizing proteins. We compute analytically the probability distributions of filament lengths for both scenarios and show how these distributions are controlled by key biochemical parameters through a dimensionless number that we identify. In Chlamydomonas cells, the assembly dynamics of its two flagella are coupled via a shared pool of molecular components that are in limited supply, and so we investigate the effect of a limiting monomer pool on the length distributions. Finally, we compare our calculations to experiments. While the computed mean lengths are consistent with observations, the noise is two orders of magnitude smaller than the observed length fluctuations.
doi_str_mv 10.1371/journal.pcbi.1008440
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f7448db23942455892f8f2a2c7f33cbb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f7448db23942455892f8f2a2c7f33cbb</doaj_id><sourcerecordid>2467618789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43</originalsourceid><addsrcrecordid>eNpVkU9vGyEQxVHVqnGcfIOq2mMvdllgF7hUiqy0jWSpl-aMhn9rLHZx2XUk59OHxK4VnxiY937M6CH0pcbLmvL6-zbt8wBxuTM6LGuMBWP4A5rVTUMXnDbi47v6Cl2P4xbjUsr2M7qilPCmkWKG-CoNU06xSr7yIULvhqmKbuimTaUPFVTW7VI89C6H5zB0VZfBhqK5QZ88xNHdns45evx5_3f1e7H-8-thdbdeGMbZtDCEGa8l9UZy4rGmFoCDFFw666UkrWibFkzrsdU1KzfdYAEGnCw-6xido4cj1ybYql0OPeSDShDU20PKnYI8BROd8pwxYTWhkhHWlE2JF54AMdxTarQurB9H1m6ve2dNWSNDvIBedoawUV16UryQcUsK4NsJkNO_vRsn1YfRuBhhcGk_KsJa3taCC1mk7Cg1OY1jdv78TY3Va37qlJ96zU-d8iu2r-9HPJv-B0ZfAFbRm44</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467618789</pqid></control><display><type>article</type><title>Control of filament length by a depolymerizing gradient</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Datta, Arnab ; Harbage, David ; Kondev, Jane</creator><contributor>Meier-Schellersheim, Martin</contributor><creatorcontrib>Datta, Arnab ; Harbage, David ; Kondev, Jane ; Meier-Schellersheim, Martin</creatorcontrib><description>Cells assemble microns-long filamentous structures from protein monomers that are nanometers in size. These structures are often highly dynamic, yet in order for them to function properly, cells maintain them at a precise length. Here we investigate length-dependent depolymerization as a mechanism of length control. This mechanism has been recently proposed for flagellar length control in the single cell organisms Chlamydomonas and Giardia. Length dependent depolymerization can arise from a concentration gradient of a depolymerizing protein, such as kinesin-13 in Giardia, along the length of the flagellum. Two possible scenarios are considered: a linear and an exponential gradient of depolymerizing proteins. We compute analytically the probability distributions of filament lengths for both scenarios and show how these distributions are controlled by key biochemical parameters through a dimensionless number that we identify. In Chlamydomonas cells, the assembly dynamics of its two flagella are coupled via a shared pool of molecular components that are in limited supply, and so we investigate the effect of a limiting monomer pool on the length distributions. Finally, we compare our calculations to experiments. While the computed mean lengths are consistent with observations, the noise is two orders of magnitude smaller than the observed length fluctuations.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008440</identifier><identifier>PMID: 33275598</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biological Transport ; Biology and Life Sciences ; Chlamydomonas - metabolism ; Flagella - metabolism ; Giardia - metabolism ; Kinesin - metabolism ; Medicine and Health Sciences ; Physical Sciences ; Polymerization</subject><ispartof>PLoS computational biology, 2020-12, Vol.16 (12), p.e1008440-e1008440</ispartof><rights>2020 Datta et al 2020 Datta et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43</citedby><cites>FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43</cites><orcidid>0000-0002-7474-1720 ; 0000-0001-7522-7144 ; 0000-0003-3288-5926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744062/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744062/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33275598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Meier-Schellersheim, Martin</contributor><creatorcontrib>Datta, Arnab</creatorcontrib><creatorcontrib>Harbage, David</creatorcontrib><creatorcontrib>Kondev, Jane</creatorcontrib><title>Control of filament length by a depolymerizing gradient</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Cells assemble microns-long filamentous structures from protein monomers that are nanometers in size. These structures are often highly dynamic, yet in order for them to function properly, cells maintain them at a precise length. Here we investigate length-dependent depolymerization as a mechanism of length control. This mechanism has been recently proposed for flagellar length control in the single cell organisms Chlamydomonas and Giardia. Length dependent depolymerization can arise from a concentration gradient of a depolymerizing protein, such as kinesin-13 in Giardia, along the length of the flagellum. Two possible scenarios are considered: a linear and an exponential gradient of depolymerizing proteins. We compute analytically the probability distributions of filament lengths for both scenarios and show how these distributions are controlled by key biochemical parameters through a dimensionless number that we identify. In Chlamydomonas cells, the assembly dynamics of its two flagella are coupled via a shared pool of molecular components that are in limited supply, and so we investigate the effect of a limiting monomer pool on the length distributions. Finally, we compare our calculations to experiments. While the computed mean lengths are consistent with observations, the noise is two orders of magnitude smaller than the observed length fluctuations.</description><subject>Biological Transport</subject><subject>Biology and Life Sciences</subject><subject>Chlamydomonas - metabolism</subject><subject>Flagella - metabolism</subject><subject>Giardia - metabolism</subject><subject>Kinesin - metabolism</subject><subject>Medicine and Health Sciences</subject><subject>Physical Sciences</subject><subject>Polymerization</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU9vGyEQxVHVqnGcfIOq2mMvdllgF7hUiqy0jWSpl-aMhn9rLHZx2XUk59OHxK4VnxiY937M6CH0pcbLmvL6-zbt8wBxuTM6LGuMBWP4A5rVTUMXnDbi47v6Cl2P4xbjUsr2M7qilPCmkWKG-CoNU06xSr7yIULvhqmKbuimTaUPFVTW7VI89C6H5zB0VZfBhqK5QZ88xNHdns45evx5_3f1e7H-8-thdbdeGMbZtDCEGa8l9UZy4rGmFoCDFFw666UkrWibFkzrsdU1KzfdYAEGnCw-6xido4cj1ybYql0OPeSDShDU20PKnYI8BROd8pwxYTWhkhHWlE2JF54AMdxTarQurB9H1m6ve2dNWSNDvIBedoawUV16UryQcUsK4NsJkNO_vRsn1YfRuBhhcGk_KsJa3taCC1mk7Cg1OY1jdv78TY3Va37qlJ96zU-d8iu2r-9HPJv-B0ZfAFbRm44</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Datta, Arnab</creator><creator>Harbage, David</creator><creator>Kondev, Jane</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7474-1720</orcidid><orcidid>https://orcid.org/0000-0001-7522-7144</orcidid><orcidid>https://orcid.org/0000-0003-3288-5926</orcidid></search><sort><creationdate>20201201</creationdate><title>Control of filament length by a depolymerizing gradient</title><author>Datta, Arnab ; Harbage, David ; Kondev, Jane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Transport</topic><topic>Biology and Life Sciences</topic><topic>Chlamydomonas - metabolism</topic><topic>Flagella - metabolism</topic><topic>Giardia - metabolism</topic><topic>Kinesin - metabolism</topic><topic>Medicine and Health Sciences</topic><topic>Physical Sciences</topic><topic>Polymerization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datta, Arnab</creatorcontrib><creatorcontrib>Harbage, David</creatorcontrib><creatorcontrib>Kondev, Jane</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datta, Arnab</au><au>Harbage, David</au><au>Kondev, Jane</au><au>Meier-Schellersheim, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of filament length by a depolymerizing gradient</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>16</volume><issue>12</issue><spage>e1008440</spage><epage>e1008440</epage><pages>e1008440-e1008440</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Cells assemble microns-long filamentous structures from protein monomers that are nanometers in size. These structures are often highly dynamic, yet in order for them to function properly, cells maintain them at a precise length. Here we investigate length-dependent depolymerization as a mechanism of length control. This mechanism has been recently proposed for flagellar length control in the single cell organisms Chlamydomonas and Giardia. Length dependent depolymerization can arise from a concentration gradient of a depolymerizing protein, such as kinesin-13 in Giardia, along the length of the flagellum. Two possible scenarios are considered: a linear and an exponential gradient of depolymerizing proteins. We compute analytically the probability distributions of filament lengths for both scenarios and show how these distributions are controlled by key biochemical parameters through a dimensionless number that we identify. In Chlamydomonas cells, the assembly dynamics of its two flagella are coupled via a shared pool of molecular components that are in limited supply, and so we investigate the effect of a limiting monomer pool on the length distributions. Finally, we compare our calculations to experiments. While the computed mean lengths are consistent with observations, the noise is two orders of magnitude smaller than the observed length fluctuations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33275598</pmid><doi>10.1371/journal.pcbi.1008440</doi><orcidid>https://orcid.org/0000-0002-7474-1720</orcidid><orcidid>https://orcid.org/0000-0001-7522-7144</orcidid><orcidid>https://orcid.org/0000-0003-3288-5926</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-12, Vol.16 (12), p.e1008440-e1008440
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f7448db23942455892f8f2a2c7f33cbb
source Open Access: PubMed Central; Publicly Available Content Database
subjects Biological Transport
Biology and Life Sciences
Chlamydomonas - metabolism
Flagella - metabolism
Giardia - metabolism
Kinesin - metabolism
Medicine and Health Sciences
Physical Sciences
Polymerization
title Control of filament length by a depolymerizing gradient
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20filament%20length%20by%20a%20depolymerizing%20gradient&rft.jtitle=PLoS%20computational%20biology&rft.au=Datta,%20Arnab&rft.date=2020-12-01&rft.volume=16&rft.issue=12&rft.spage=e1008440&rft.epage=e1008440&rft.pages=e1008440-e1008440&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008440&rft_dat=%3Cproquest_doaj_%3E2467618789%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-c24cfb93fc972f0b3daa7a9879edf99268656ac6f0db14686b508acae94cfde43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2467618789&rft_id=info:pmid/33275598&rfr_iscdi=true