Loading…
Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression
Epac1 (Exchange protein directly activated by cAMP 1) limits fluid loss from the circulation by tightening the endothelial barrier. We show here that Epac1 −/− mice, but not Epac2 −/− mice, have prolonged bleeding time, suggesting that Epac1 may limit fluid loss also by restraining bleeding. The Epa...
Saved in:
Published in: | Scientific reports 2017-08, Vol.7 (1), p.8725-15, Article 8725 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 8725 |
container_title | Scientific reports |
container_volume | 7 |
creator | Nygaard, Gyrid Herfindal, Lars Asrud, Kathrine S. Bjørnstad, Ronja Kopperud, Reidun K. Oveland, Eystein Berven, Frode S. Myhren, Lene Hoivik, Erling A. Lunde, Turid Helen Felli Bakke, Marit Døskeland, Stein O. Selheim, Frode |
description | Epac1 (Exchange protein directly activated by cAMP 1) limits fluid loss from the circulation by tightening the endothelial barrier. We show here that Epac1
−/−
mice, but not Epac2
−/−
mice, have prolonged bleeding time, suggesting that Epac1 may limit fluid loss also by restraining bleeding. The Epac1
−/−
mice had deficient
in vitro
secondary hemostasis. Quantitative comprehensive proteomics analysis revealed that Epac1
−/−
mouse platelets (thrombocytes) had unbalanced expression of key components of the glycoprotein Ib-IX-V (GPIb-IX-V) complex, with decrease of GP1bβ and no change of GP1bα. This complex is critical for platelet adhesion under arterial shear conditions. Furthermore, Epac1
−/−
mice have reduced levels of plasma coagulation factors and fibrinogen, increased size of circulating platelets, increased megakaryocytes (the GP1bβ level was decreased also in Epac1
−/−
bone marrow) and higher abundance of reticulated platelets. Viscoelastic measurement of clotting function revealed Epac1
−/−
mice with a dysfunction in the clotting process, which corresponds to reduced plasma levels of coagulation factors like factor XIII and fibrinogen. We propose that the observed platelet phenotype is due to deficient Epac1 activity during megakaryopoiesis and thrombopoiesis, and that the defects in blood clotting for Epac1
−/−
is connected to secondary hemostasis. |
doi_str_mv | 10.1038/s41598-017-08975-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f75be00c06b64f34bcf497f723b222ec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f75be00c06b64f34bcf497f723b222ec</doaj_id><sourcerecordid>1957247439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3</originalsourceid><addsrcrecordid>eNp1ks1u1DAQxyMEolXpC3BAkbhwSevP2L4goaqUlSrBAa5Y_pjsepXEwc625LV4EJ4Jt1uqLRK-2PL852fPzL-qXmN0hhGV55lhrmSDsGiQVII3y7PqmCDGG0IJeX5wPqpOc96isjhRDKuX1RGRkmCJ-XH1_XIyDjceuuACjHM9BAf1xtxAbXsAH8Z1PW1gjPMyQW1GX8-bFAcb3TJDrm_DvKk9uAQmg6-vvqzs7181_JwS5Bzi-Kp60Zk-w-nDflJ9-3j59eJTc_35anXx4bpxnKG58R2zUigqnZISLCceY-EtF8a1tMWE2VKsYcpgJKgTCitojfFeSIkIQo6eVKs910ez1VMKg0mLjibo-4uY1tqkObgedCe4hZKDWtuyjjLrOqZEJwi1hBC4Y73fs6adHcC70pVk-ifQp5ExbPQ63mjOWyJaVgDvHgAp_thBnvUQsoO-NyPEXdZYUcREW6ZYpG__kW7jLo2lVUXFBWGCUVVUZK9yKeacoHv8DEb6zg167wZd3KDv3aCXkvTmsIzHlL-zLwK6F-QSGteQDt7-P_YPNxjBgA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957247439</pqid></control><display><type>article</type><title>Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Nygaard, Gyrid ; Herfindal, Lars ; Asrud, Kathrine S. ; Bjørnstad, Ronja ; Kopperud, Reidun K. ; Oveland, Eystein ; Berven, Frode S. ; Myhren, Lene ; Hoivik, Erling A. ; Lunde, Turid Helen Felli ; Bakke, Marit ; Døskeland, Stein O. ; Selheim, Frode</creator><creatorcontrib>Nygaard, Gyrid ; Herfindal, Lars ; Asrud, Kathrine S. ; Bjørnstad, Ronja ; Kopperud, Reidun K. ; Oveland, Eystein ; Berven, Frode S. ; Myhren, Lene ; Hoivik, Erling A. ; Lunde, Turid Helen Felli ; Bakke, Marit ; Døskeland, Stein O. ; Selheim, Frode</creatorcontrib><description>Epac1 (Exchange protein directly activated by cAMP 1) limits fluid loss from the circulation by tightening the endothelial barrier. We show here that Epac1
−/−
mice, but not Epac2
−/−
mice, have prolonged bleeding time, suggesting that Epac1 may limit fluid loss also by restraining bleeding. The Epac1
−/−
mice had deficient
in vitro
secondary hemostasis. Quantitative comprehensive proteomics analysis revealed that Epac1
−/−
mouse platelets (thrombocytes) had unbalanced expression of key components of the glycoprotein Ib-IX-V (GPIb-IX-V) complex, with decrease of GP1bβ and no change of GP1bα. This complex is critical for platelet adhesion under arterial shear conditions. Furthermore, Epac1
−/−
mice have reduced levels of plasma coagulation factors and fibrinogen, increased size of circulating platelets, increased megakaryocytes (the GP1bβ level was decreased also in Epac1
−/−
bone marrow) and higher abundance of reticulated platelets. Viscoelastic measurement of clotting function revealed Epac1
−/−
mice with a dysfunction in the clotting process, which corresponds to reduced plasma levels of coagulation factors like factor XIII and fibrinogen. We propose that the observed platelet phenotype is due to deficient Epac1 activity during megakaryopoiesis and thrombopoiesis, and that the defects in blood clotting for Epac1
−/−
is connected to secondary hemostasis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-08975-y</identifier><identifier>PMID: 28821815</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/95 ; 14/63 ; 631/45/612/1221 ; 631/80/86 ; 64/60 ; 82/51 ; 82/58 ; Adenosine Diphosphate - pharmacology ; Animals ; Bleeding ; Blood coagulation ; Blood Coagulation Factors - metabolism ; Blood platelets ; Blood Platelets - metabolism ; Blood Platelets - ultrastructure ; Bone marrow ; Cell Size ; Clotting ; Coagulation ; Coagulation factors ; Collagen - pharmacology ; Cytomegalovirus ; Exocytosis ; Fetus - metabolism ; Fibrinogen ; Genotype & phenotype ; Guanine Nucleotide Exchange Factors - deficiency ; Guanine Nucleotide Exchange Factors - metabolism ; Hemoglobin ; Hemorrhage - blood ; Hemorrhage - metabolism ; Hemostasis ; Humanities and Social Sciences ; Kinases ; Liver - embryology ; Megakaryocytes ; Megakaryocytes - drug effects ; Megakaryocytes - metabolism ; Mice, Inbred C57BL ; multidisciplinary ; P-Selectin - metabolism ; Phenotype ; Plasma ; Plasma levels ; Platelet Glycoprotein GPIb-IX Complex - metabolism ; Platelets ; Proteins ; Proteomics ; Science ; Science (multidisciplinary) ; Thrombin - pharmacology ; Thrombopoiesis ; Viscoelasticity</subject><ispartof>Scientific reports, 2017-08, Vol.7 (1), p.8725-15, Article 8725</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3</citedby><cites>FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3</cites><orcidid>0000-0003-2206-1480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957247439/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957247439?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28821815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nygaard, Gyrid</creatorcontrib><creatorcontrib>Herfindal, Lars</creatorcontrib><creatorcontrib>Asrud, Kathrine S.</creatorcontrib><creatorcontrib>Bjørnstad, Ronja</creatorcontrib><creatorcontrib>Kopperud, Reidun K.</creatorcontrib><creatorcontrib>Oveland, Eystein</creatorcontrib><creatorcontrib>Berven, Frode S.</creatorcontrib><creatorcontrib>Myhren, Lene</creatorcontrib><creatorcontrib>Hoivik, Erling A.</creatorcontrib><creatorcontrib>Lunde, Turid Helen Felli</creatorcontrib><creatorcontrib>Bakke, Marit</creatorcontrib><creatorcontrib>Døskeland, Stein O.</creatorcontrib><creatorcontrib>Selheim, Frode</creatorcontrib><title>Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Epac1 (Exchange protein directly activated by cAMP 1) limits fluid loss from the circulation by tightening the endothelial barrier. We show here that Epac1
−/−
mice, but not Epac2
−/−
mice, have prolonged bleeding time, suggesting that Epac1 may limit fluid loss also by restraining bleeding. The Epac1
−/−
mice had deficient
in vitro
secondary hemostasis. Quantitative comprehensive proteomics analysis revealed that Epac1
−/−
mouse platelets (thrombocytes) had unbalanced expression of key components of the glycoprotein Ib-IX-V (GPIb-IX-V) complex, with decrease of GP1bβ and no change of GP1bα. This complex is critical for platelet adhesion under arterial shear conditions. Furthermore, Epac1
−/−
mice have reduced levels of plasma coagulation factors and fibrinogen, increased size of circulating platelets, increased megakaryocytes (the GP1bβ level was decreased also in Epac1
−/−
bone marrow) and higher abundance of reticulated platelets. Viscoelastic measurement of clotting function revealed Epac1
−/−
mice with a dysfunction in the clotting process, which corresponds to reduced plasma levels of coagulation factors like factor XIII and fibrinogen. We propose that the observed platelet phenotype is due to deficient Epac1 activity during megakaryopoiesis and thrombopoiesis, and that the defects in blood clotting for Epac1
−/−
is connected to secondary hemostasis.</description><subject>13</subject><subject>13/95</subject><subject>14/63</subject><subject>631/45/612/1221</subject><subject>631/80/86</subject><subject>64/60</subject><subject>82/51</subject><subject>82/58</subject><subject>Adenosine Diphosphate - pharmacology</subject><subject>Animals</subject><subject>Bleeding</subject><subject>Blood coagulation</subject><subject>Blood Coagulation Factors - metabolism</subject><subject>Blood platelets</subject><subject>Blood Platelets - metabolism</subject><subject>Blood Platelets - ultrastructure</subject><subject>Bone marrow</subject><subject>Cell Size</subject><subject>Clotting</subject><subject>Coagulation</subject><subject>Coagulation factors</subject><subject>Collagen - pharmacology</subject><subject>Cytomegalovirus</subject><subject>Exocytosis</subject><subject>Fetus - metabolism</subject><subject>Fibrinogen</subject><subject>Genotype & phenotype</subject><subject>Guanine Nucleotide Exchange Factors - deficiency</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Hemoglobin</subject><subject>Hemorrhage - blood</subject><subject>Hemorrhage - metabolism</subject><subject>Hemostasis</subject><subject>Humanities and Social Sciences</subject><subject>Kinases</subject><subject>Liver - embryology</subject><subject>Megakaryocytes</subject><subject>Megakaryocytes - drug effects</subject><subject>Megakaryocytes - metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>P-Selectin - metabolism</subject><subject>Phenotype</subject><subject>Plasma</subject><subject>Plasma levels</subject><subject>Platelet Glycoprotein GPIb-IX Complex - metabolism</subject><subject>Platelets</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thrombin - pharmacology</subject><subject>Thrombopoiesis</subject><subject>Viscoelasticity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1ks1u1DAQxyMEolXpC3BAkbhwSevP2L4goaqUlSrBAa5Y_pjsepXEwc625LV4EJ4Jt1uqLRK-2PL852fPzL-qXmN0hhGV55lhrmSDsGiQVII3y7PqmCDGG0IJeX5wPqpOc96isjhRDKuX1RGRkmCJ-XH1_XIyDjceuuACjHM9BAf1xtxAbXsAH8Z1PW1gjPMyQW1GX8-bFAcb3TJDrm_DvKk9uAQmg6-vvqzs7181_JwS5Bzi-Kp60Zk-w-nDflJ9-3j59eJTc_35anXx4bpxnKG58R2zUigqnZISLCceY-EtF8a1tMWE2VKsYcpgJKgTCitojfFeSIkIQo6eVKs910ez1VMKg0mLjibo-4uY1tqkObgedCe4hZKDWtuyjjLrOqZEJwi1hBC4Y73fs6adHcC70pVk-ifQp5ExbPQ63mjOWyJaVgDvHgAp_thBnvUQsoO-NyPEXdZYUcREW6ZYpG__kW7jLo2lVUXFBWGCUVVUZK9yKeacoHv8DEb6zg167wZd3KDv3aCXkvTmsIzHlL-zLwK6F-QSGteQDt7-P_YPNxjBgA</recordid><startdate>20170818</startdate><enddate>20170818</enddate><creator>Nygaard, Gyrid</creator><creator>Herfindal, Lars</creator><creator>Asrud, Kathrine S.</creator><creator>Bjørnstad, Ronja</creator><creator>Kopperud, Reidun K.</creator><creator>Oveland, Eystein</creator><creator>Berven, Frode S.</creator><creator>Myhren, Lene</creator><creator>Hoivik, Erling A.</creator><creator>Lunde, Turid Helen Felli</creator><creator>Bakke, Marit</creator><creator>Døskeland, Stein O.</creator><creator>Selheim, Frode</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2206-1480</orcidid></search><sort><creationdate>20170818</creationdate><title>Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression</title><author>Nygaard, Gyrid ; Herfindal, Lars ; Asrud, Kathrine S. ; Bjørnstad, Ronja ; Kopperud, Reidun K. ; Oveland, Eystein ; Berven, Frode S. ; Myhren, Lene ; Hoivik, Erling A. ; Lunde, Turid Helen Felli ; Bakke, Marit ; Døskeland, Stein O. ; Selheim, Frode</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13</topic><topic>13/95</topic><topic>14/63</topic><topic>631/45/612/1221</topic><topic>631/80/86</topic><topic>64/60</topic><topic>82/51</topic><topic>82/58</topic><topic>Adenosine Diphosphate - pharmacology</topic><topic>Animals</topic><topic>Bleeding</topic><topic>Blood coagulation</topic><topic>Blood Coagulation Factors - metabolism</topic><topic>Blood platelets</topic><topic>Blood Platelets - metabolism</topic><topic>Blood Platelets - ultrastructure</topic><topic>Bone marrow</topic><topic>Cell Size</topic><topic>Clotting</topic><topic>Coagulation</topic><topic>Coagulation factors</topic><topic>Collagen - pharmacology</topic><topic>Cytomegalovirus</topic><topic>Exocytosis</topic><topic>Fetus - metabolism</topic><topic>Fibrinogen</topic><topic>Genotype & phenotype</topic><topic>Guanine Nucleotide Exchange Factors - deficiency</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Hemoglobin</topic><topic>Hemorrhage - blood</topic><topic>Hemorrhage - metabolism</topic><topic>Hemostasis</topic><topic>Humanities and Social Sciences</topic><topic>Kinases</topic><topic>Liver - embryology</topic><topic>Megakaryocytes</topic><topic>Megakaryocytes - drug effects</topic><topic>Megakaryocytes - metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>P-Selectin - metabolism</topic><topic>Phenotype</topic><topic>Plasma</topic><topic>Plasma levels</topic><topic>Platelet Glycoprotein GPIb-IX Complex - metabolism</topic><topic>Platelets</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thrombin - pharmacology</topic><topic>Thrombopoiesis</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nygaard, Gyrid</creatorcontrib><creatorcontrib>Herfindal, Lars</creatorcontrib><creatorcontrib>Asrud, Kathrine S.</creatorcontrib><creatorcontrib>Bjørnstad, Ronja</creatorcontrib><creatorcontrib>Kopperud, Reidun K.</creatorcontrib><creatorcontrib>Oveland, Eystein</creatorcontrib><creatorcontrib>Berven, Frode S.</creatorcontrib><creatorcontrib>Myhren, Lene</creatorcontrib><creatorcontrib>Hoivik, Erling A.</creatorcontrib><creatorcontrib>Lunde, Turid Helen Felli</creatorcontrib><creatorcontrib>Bakke, Marit</creatorcontrib><creatorcontrib>Døskeland, Stein O.</creatorcontrib><creatorcontrib>Selheim, Frode</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nygaard, Gyrid</au><au>Herfindal, Lars</au><au>Asrud, Kathrine S.</au><au>Bjørnstad, Ronja</au><au>Kopperud, Reidun K.</au><au>Oveland, Eystein</au><au>Berven, Frode S.</au><au>Myhren, Lene</au><au>Hoivik, Erling A.</au><au>Lunde, Turid Helen Felli</au><au>Bakke, Marit</au><au>Døskeland, Stein O.</au><au>Selheim, Frode</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-08-18</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>8725</spage><epage>15</epage><pages>8725-15</pages><artnum>8725</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Epac1 (Exchange protein directly activated by cAMP 1) limits fluid loss from the circulation by tightening the endothelial barrier. We show here that Epac1
−/−
mice, but not Epac2
−/−
mice, have prolonged bleeding time, suggesting that Epac1 may limit fluid loss also by restraining bleeding. The Epac1
−/−
mice had deficient
in vitro
secondary hemostasis. Quantitative comprehensive proteomics analysis revealed that Epac1
−/−
mouse platelets (thrombocytes) had unbalanced expression of key components of the glycoprotein Ib-IX-V (GPIb-IX-V) complex, with decrease of GP1bβ and no change of GP1bα. This complex is critical for platelet adhesion under arterial shear conditions. Furthermore, Epac1
−/−
mice have reduced levels of plasma coagulation factors and fibrinogen, increased size of circulating platelets, increased megakaryocytes (the GP1bβ level was decreased also in Epac1
−/−
bone marrow) and higher abundance of reticulated platelets. Viscoelastic measurement of clotting function revealed Epac1
−/−
mice with a dysfunction in the clotting process, which corresponds to reduced plasma levels of coagulation factors like factor XIII and fibrinogen. We propose that the observed platelet phenotype is due to deficient Epac1 activity during megakaryopoiesis and thrombopoiesis, and that the defects in blood clotting for Epac1
−/−
is connected to secondary hemostasis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28821815</pmid><doi>10.1038/s41598-017-08975-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2206-1480</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-08, Vol.7 (1), p.8725-15, Article 8725 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f75be00c06b64f34bcf497f723b222ec |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13 13/95 14/63 631/45/612/1221 631/80/86 64/60 82/51 82/58 Adenosine Diphosphate - pharmacology Animals Bleeding Blood coagulation Blood Coagulation Factors - metabolism Blood platelets Blood Platelets - metabolism Blood Platelets - ultrastructure Bone marrow Cell Size Clotting Coagulation Coagulation factors Collagen - pharmacology Cytomegalovirus Exocytosis Fetus - metabolism Fibrinogen Genotype & phenotype Guanine Nucleotide Exchange Factors - deficiency Guanine Nucleotide Exchange Factors - metabolism Hemoglobin Hemorrhage - blood Hemorrhage - metabolism Hemostasis Humanities and Social Sciences Kinases Liver - embryology Megakaryocytes Megakaryocytes - drug effects Megakaryocytes - metabolism Mice, Inbred C57BL multidisciplinary P-Selectin - metabolism Phenotype Plasma Plasma levels Platelet Glycoprotein GPIb-IX Complex - metabolism Platelets Proteins Proteomics Science Science (multidisciplinary) Thrombin - pharmacology Thrombopoiesis Viscoelasticity |
title | Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epac1-deficient%20mice%20have%20bleeding%20phenotype%20and%20thrombocytes%20with%20decreased%20GPIb%CE%B2%20expression&rft.jtitle=Scientific%20reports&rft.au=Nygaard,%20Gyrid&rft.date=2017-08-18&rft.volume=7&rft.issue=1&rft.spage=8725&rft.epage=15&rft.pages=8725-15&rft.artnum=8725&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-08975-y&rft_dat=%3Cproquest_doaj_%3E1957247439%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957247439&rft_id=info:pmid/28821815&rfr_iscdi=true |