Loading…

Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression

Epac1 (Exchange protein directly activated by cAMP 1) limits fluid loss from the circulation by tightening the endothelial barrier. We show here that Epac1 −/− mice, but not Epac2 −/− mice, have prolonged bleeding time, suggesting that Epac1 may limit fluid loss also by restraining bleeding. The Epa...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-08, Vol.7 (1), p.8725-15, Article 8725
Main Authors: Nygaard, Gyrid, Herfindal, Lars, Asrud, Kathrine S., Bjørnstad, Ronja, Kopperud, Reidun K., Oveland, Eystein, Berven, Frode S., Myhren, Lene, Hoivik, Erling A., Lunde, Turid Helen Felli, Bakke, Marit, Døskeland, Stein O., Selheim, Frode
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3
cites cdi_FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3
container_end_page 15
container_issue 1
container_start_page 8725
container_title Scientific reports
container_volume 7
creator Nygaard, Gyrid
Herfindal, Lars
Asrud, Kathrine S.
Bjørnstad, Ronja
Kopperud, Reidun K.
Oveland, Eystein
Berven, Frode S.
Myhren, Lene
Hoivik, Erling A.
Lunde, Turid Helen Felli
Bakke, Marit
Døskeland, Stein O.
Selheim, Frode
description Epac1 (Exchange protein directly activated by cAMP 1) limits fluid loss from the circulation by tightening the endothelial barrier. We show here that Epac1 −/− mice, but not Epac2 −/− mice, have prolonged bleeding time, suggesting that Epac1 may limit fluid loss also by restraining bleeding. The Epac1 −/− mice had deficient in vitro secondary hemostasis. Quantitative comprehensive proteomics analysis revealed that Epac1 −/− mouse platelets (thrombocytes) had unbalanced expression of key components of the glycoprotein Ib-IX-V (GPIb-IX-V) complex, with decrease of GP1bβ and no change of GP1bα. This complex is critical for platelet adhesion under arterial shear conditions. Furthermore, Epac1 −/− mice have reduced levels of plasma coagulation factors and fibrinogen, increased size of circulating platelets, increased megakaryocytes (the GP1bβ level was decreased also in Epac1 −/− bone marrow) and higher abundance of reticulated platelets. Viscoelastic measurement of clotting function revealed Epac1 −/− mice with a dysfunction in the clotting process, which corresponds to reduced plasma levels of coagulation factors like factor XIII and fibrinogen. We propose that the observed platelet phenotype is due to deficient Epac1 activity during megakaryopoiesis and thrombopoiesis, and that the defects in blood clotting for Epac1 −/− is connected to secondary hemostasis.
doi_str_mv 10.1038/s41598-017-08975-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f75be00c06b64f34bcf497f723b222ec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f75be00c06b64f34bcf497f723b222ec</doaj_id><sourcerecordid>1957247439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3</originalsourceid><addsrcrecordid>eNp1ks1u1DAQxyMEolXpC3BAkbhwSevP2L4goaqUlSrBAa5Y_pjsepXEwc625LV4EJ4Jt1uqLRK-2PL852fPzL-qXmN0hhGV55lhrmSDsGiQVII3y7PqmCDGG0IJeX5wPqpOc96isjhRDKuX1RGRkmCJ-XH1_XIyDjceuuACjHM9BAf1xtxAbXsAH8Z1PW1gjPMyQW1GX8-bFAcb3TJDrm_DvKk9uAQmg6-vvqzs7181_JwS5Bzi-Kp60Zk-w-nDflJ9-3j59eJTc_35anXx4bpxnKG58R2zUigqnZISLCceY-EtF8a1tMWE2VKsYcpgJKgTCitojfFeSIkIQo6eVKs910ez1VMKg0mLjibo-4uY1tqkObgedCe4hZKDWtuyjjLrOqZEJwi1hBC4Y73fs6adHcC70pVk-ifQp5ExbPQ63mjOWyJaVgDvHgAp_thBnvUQsoO-NyPEXdZYUcREW6ZYpG__kW7jLo2lVUXFBWGCUVVUZK9yKeacoHv8DEb6zg167wZd3KDv3aCXkvTmsIzHlL-zLwK6F-QSGteQDt7-P_YPNxjBgA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957247439</pqid></control><display><type>article</type><title>Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Nygaard, Gyrid ; Herfindal, Lars ; Asrud, Kathrine S. ; Bjørnstad, Ronja ; Kopperud, Reidun K. ; Oveland, Eystein ; Berven, Frode S. ; Myhren, Lene ; Hoivik, Erling A. ; Lunde, Turid Helen Felli ; Bakke, Marit ; Døskeland, Stein O. ; Selheim, Frode</creator><creatorcontrib>Nygaard, Gyrid ; Herfindal, Lars ; Asrud, Kathrine S. ; Bjørnstad, Ronja ; Kopperud, Reidun K. ; Oveland, Eystein ; Berven, Frode S. ; Myhren, Lene ; Hoivik, Erling A. ; Lunde, Turid Helen Felli ; Bakke, Marit ; Døskeland, Stein O. ; Selheim, Frode</creatorcontrib><description>Epac1 (Exchange protein directly activated by cAMP 1) limits fluid loss from the circulation by tightening the endothelial barrier. We show here that Epac1 −/− mice, but not Epac2 −/− mice, have prolonged bleeding time, suggesting that Epac1 may limit fluid loss also by restraining bleeding. The Epac1 −/− mice had deficient in vitro secondary hemostasis. Quantitative comprehensive proteomics analysis revealed that Epac1 −/− mouse platelets (thrombocytes) had unbalanced expression of key components of the glycoprotein Ib-IX-V (GPIb-IX-V) complex, with decrease of GP1bβ and no change of GP1bα. This complex is critical for platelet adhesion under arterial shear conditions. Furthermore, Epac1 −/− mice have reduced levels of plasma coagulation factors and fibrinogen, increased size of circulating platelets, increased megakaryocytes (the GP1bβ level was decreased also in Epac1 −/− bone marrow) and higher abundance of reticulated platelets. Viscoelastic measurement of clotting function revealed Epac1 −/− mice with a dysfunction in the clotting process, which corresponds to reduced plasma levels of coagulation factors like factor XIII and fibrinogen. We propose that the observed platelet phenotype is due to deficient Epac1 activity during megakaryopoiesis and thrombopoiesis, and that the defects in blood clotting for Epac1 −/− is connected to secondary hemostasis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-08975-y</identifier><identifier>PMID: 28821815</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/95 ; 14/63 ; 631/45/612/1221 ; 631/80/86 ; 64/60 ; 82/51 ; 82/58 ; Adenosine Diphosphate - pharmacology ; Animals ; Bleeding ; Blood coagulation ; Blood Coagulation Factors - metabolism ; Blood platelets ; Blood Platelets - metabolism ; Blood Platelets - ultrastructure ; Bone marrow ; Cell Size ; Clotting ; Coagulation ; Coagulation factors ; Collagen - pharmacology ; Cytomegalovirus ; Exocytosis ; Fetus - metabolism ; Fibrinogen ; Genotype &amp; phenotype ; Guanine Nucleotide Exchange Factors - deficiency ; Guanine Nucleotide Exchange Factors - metabolism ; Hemoglobin ; Hemorrhage - blood ; Hemorrhage - metabolism ; Hemostasis ; Humanities and Social Sciences ; Kinases ; Liver - embryology ; Megakaryocytes ; Megakaryocytes - drug effects ; Megakaryocytes - metabolism ; Mice, Inbred C57BL ; multidisciplinary ; P-Selectin - metabolism ; Phenotype ; Plasma ; Plasma levels ; Platelet Glycoprotein GPIb-IX Complex - metabolism ; Platelets ; Proteins ; Proteomics ; Science ; Science (multidisciplinary) ; Thrombin - pharmacology ; Thrombopoiesis ; Viscoelasticity</subject><ispartof>Scientific reports, 2017-08, Vol.7 (1), p.8725-15, Article 8725</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3</citedby><cites>FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3</cites><orcidid>0000-0003-2206-1480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957247439/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957247439?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28821815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nygaard, Gyrid</creatorcontrib><creatorcontrib>Herfindal, Lars</creatorcontrib><creatorcontrib>Asrud, Kathrine S.</creatorcontrib><creatorcontrib>Bjørnstad, Ronja</creatorcontrib><creatorcontrib>Kopperud, Reidun K.</creatorcontrib><creatorcontrib>Oveland, Eystein</creatorcontrib><creatorcontrib>Berven, Frode S.</creatorcontrib><creatorcontrib>Myhren, Lene</creatorcontrib><creatorcontrib>Hoivik, Erling A.</creatorcontrib><creatorcontrib>Lunde, Turid Helen Felli</creatorcontrib><creatorcontrib>Bakke, Marit</creatorcontrib><creatorcontrib>Døskeland, Stein O.</creatorcontrib><creatorcontrib>Selheim, Frode</creatorcontrib><title>Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Epac1 (Exchange protein directly activated by cAMP 1) limits fluid loss from the circulation by tightening the endothelial barrier. We show here that Epac1 −/− mice, but not Epac2 −/− mice, have prolonged bleeding time, suggesting that Epac1 may limit fluid loss also by restraining bleeding. The Epac1 −/− mice had deficient in vitro secondary hemostasis. Quantitative comprehensive proteomics analysis revealed that Epac1 −/− mouse platelets (thrombocytes) had unbalanced expression of key components of the glycoprotein Ib-IX-V (GPIb-IX-V) complex, with decrease of GP1bβ and no change of GP1bα. This complex is critical for platelet adhesion under arterial shear conditions. Furthermore, Epac1 −/− mice have reduced levels of plasma coagulation factors and fibrinogen, increased size of circulating platelets, increased megakaryocytes (the GP1bβ level was decreased also in Epac1 −/− bone marrow) and higher abundance of reticulated platelets. Viscoelastic measurement of clotting function revealed Epac1 −/− mice with a dysfunction in the clotting process, which corresponds to reduced plasma levels of coagulation factors like factor XIII and fibrinogen. We propose that the observed platelet phenotype is due to deficient Epac1 activity during megakaryopoiesis and thrombopoiesis, and that the defects in blood clotting for Epac1 −/− is connected to secondary hemostasis.</description><subject>13</subject><subject>13/95</subject><subject>14/63</subject><subject>631/45/612/1221</subject><subject>631/80/86</subject><subject>64/60</subject><subject>82/51</subject><subject>82/58</subject><subject>Adenosine Diphosphate - pharmacology</subject><subject>Animals</subject><subject>Bleeding</subject><subject>Blood coagulation</subject><subject>Blood Coagulation Factors - metabolism</subject><subject>Blood platelets</subject><subject>Blood Platelets - metabolism</subject><subject>Blood Platelets - ultrastructure</subject><subject>Bone marrow</subject><subject>Cell Size</subject><subject>Clotting</subject><subject>Coagulation</subject><subject>Coagulation factors</subject><subject>Collagen - pharmacology</subject><subject>Cytomegalovirus</subject><subject>Exocytosis</subject><subject>Fetus - metabolism</subject><subject>Fibrinogen</subject><subject>Genotype &amp; phenotype</subject><subject>Guanine Nucleotide Exchange Factors - deficiency</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Hemoglobin</subject><subject>Hemorrhage - blood</subject><subject>Hemorrhage - metabolism</subject><subject>Hemostasis</subject><subject>Humanities and Social Sciences</subject><subject>Kinases</subject><subject>Liver - embryology</subject><subject>Megakaryocytes</subject><subject>Megakaryocytes - drug effects</subject><subject>Megakaryocytes - metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>P-Selectin - metabolism</subject><subject>Phenotype</subject><subject>Plasma</subject><subject>Plasma levels</subject><subject>Platelet Glycoprotein GPIb-IX Complex - metabolism</subject><subject>Platelets</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thrombin - pharmacology</subject><subject>Thrombopoiesis</subject><subject>Viscoelasticity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1ks1u1DAQxyMEolXpC3BAkbhwSevP2L4goaqUlSrBAa5Y_pjsepXEwc625LV4EJ4Jt1uqLRK-2PL852fPzL-qXmN0hhGV55lhrmSDsGiQVII3y7PqmCDGG0IJeX5wPqpOc96isjhRDKuX1RGRkmCJ-XH1_XIyDjceuuACjHM9BAf1xtxAbXsAH8Z1PW1gjPMyQW1GX8-bFAcb3TJDrm_DvKk9uAQmg6-vvqzs7181_JwS5Bzi-Kp60Zk-w-nDflJ9-3j59eJTc_35anXx4bpxnKG58R2zUigqnZISLCceY-EtF8a1tMWE2VKsYcpgJKgTCitojfFeSIkIQo6eVKs910ez1VMKg0mLjibo-4uY1tqkObgedCe4hZKDWtuyjjLrOqZEJwi1hBC4Y73fs6adHcC70pVk-ifQp5ExbPQ63mjOWyJaVgDvHgAp_thBnvUQsoO-NyPEXdZYUcREW6ZYpG__kW7jLo2lVUXFBWGCUVVUZK9yKeacoHv8DEb6zg167wZd3KDv3aCXkvTmsIzHlL-zLwK6F-QSGteQDt7-P_YPNxjBgA</recordid><startdate>20170818</startdate><enddate>20170818</enddate><creator>Nygaard, Gyrid</creator><creator>Herfindal, Lars</creator><creator>Asrud, Kathrine S.</creator><creator>Bjørnstad, Ronja</creator><creator>Kopperud, Reidun K.</creator><creator>Oveland, Eystein</creator><creator>Berven, Frode S.</creator><creator>Myhren, Lene</creator><creator>Hoivik, Erling A.</creator><creator>Lunde, Turid Helen Felli</creator><creator>Bakke, Marit</creator><creator>Døskeland, Stein O.</creator><creator>Selheim, Frode</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2206-1480</orcidid></search><sort><creationdate>20170818</creationdate><title>Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression</title><author>Nygaard, Gyrid ; Herfindal, Lars ; Asrud, Kathrine S. ; Bjørnstad, Ronja ; Kopperud, Reidun K. ; Oveland, Eystein ; Berven, Frode S. ; Myhren, Lene ; Hoivik, Erling A. ; Lunde, Turid Helen Felli ; Bakke, Marit ; Døskeland, Stein O. ; Selheim, Frode</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13</topic><topic>13/95</topic><topic>14/63</topic><topic>631/45/612/1221</topic><topic>631/80/86</topic><topic>64/60</topic><topic>82/51</topic><topic>82/58</topic><topic>Adenosine Diphosphate - pharmacology</topic><topic>Animals</topic><topic>Bleeding</topic><topic>Blood coagulation</topic><topic>Blood Coagulation Factors - metabolism</topic><topic>Blood platelets</topic><topic>Blood Platelets - metabolism</topic><topic>Blood Platelets - ultrastructure</topic><topic>Bone marrow</topic><topic>Cell Size</topic><topic>Clotting</topic><topic>Coagulation</topic><topic>Coagulation factors</topic><topic>Collagen - pharmacology</topic><topic>Cytomegalovirus</topic><topic>Exocytosis</topic><topic>Fetus - metabolism</topic><topic>Fibrinogen</topic><topic>Genotype &amp; phenotype</topic><topic>Guanine Nucleotide Exchange Factors - deficiency</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Hemoglobin</topic><topic>Hemorrhage - blood</topic><topic>Hemorrhage - metabolism</topic><topic>Hemostasis</topic><topic>Humanities and Social Sciences</topic><topic>Kinases</topic><topic>Liver - embryology</topic><topic>Megakaryocytes</topic><topic>Megakaryocytes - drug effects</topic><topic>Megakaryocytes - metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>P-Selectin - metabolism</topic><topic>Phenotype</topic><topic>Plasma</topic><topic>Plasma levels</topic><topic>Platelet Glycoprotein GPIb-IX Complex - metabolism</topic><topic>Platelets</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thrombin - pharmacology</topic><topic>Thrombopoiesis</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nygaard, Gyrid</creatorcontrib><creatorcontrib>Herfindal, Lars</creatorcontrib><creatorcontrib>Asrud, Kathrine S.</creatorcontrib><creatorcontrib>Bjørnstad, Ronja</creatorcontrib><creatorcontrib>Kopperud, Reidun K.</creatorcontrib><creatorcontrib>Oveland, Eystein</creatorcontrib><creatorcontrib>Berven, Frode S.</creatorcontrib><creatorcontrib>Myhren, Lene</creatorcontrib><creatorcontrib>Hoivik, Erling A.</creatorcontrib><creatorcontrib>Lunde, Turid Helen Felli</creatorcontrib><creatorcontrib>Bakke, Marit</creatorcontrib><creatorcontrib>Døskeland, Stein O.</creatorcontrib><creatorcontrib>Selheim, Frode</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nygaard, Gyrid</au><au>Herfindal, Lars</au><au>Asrud, Kathrine S.</au><au>Bjørnstad, Ronja</au><au>Kopperud, Reidun K.</au><au>Oveland, Eystein</au><au>Berven, Frode S.</au><au>Myhren, Lene</au><au>Hoivik, Erling A.</au><au>Lunde, Turid Helen Felli</au><au>Bakke, Marit</au><au>Døskeland, Stein O.</au><au>Selheim, Frode</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-08-18</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>8725</spage><epage>15</epage><pages>8725-15</pages><artnum>8725</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Epac1 (Exchange protein directly activated by cAMP 1) limits fluid loss from the circulation by tightening the endothelial barrier. We show here that Epac1 −/− mice, but not Epac2 −/− mice, have prolonged bleeding time, suggesting that Epac1 may limit fluid loss also by restraining bleeding. The Epac1 −/− mice had deficient in vitro secondary hemostasis. Quantitative comprehensive proteomics analysis revealed that Epac1 −/− mouse platelets (thrombocytes) had unbalanced expression of key components of the glycoprotein Ib-IX-V (GPIb-IX-V) complex, with decrease of GP1bβ and no change of GP1bα. This complex is critical for platelet adhesion under arterial shear conditions. Furthermore, Epac1 −/− mice have reduced levels of plasma coagulation factors and fibrinogen, increased size of circulating platelets, increased megakaryocytes (the GP1bβ level was decreased also in Epac1 −/− bone marrow) and higher abundance of reticulated platelets. Viscoelastic measurement of clotting function revealed Epac1 −/− mice with a dysfunction in the clotting process, which corresponds to reduced plasma levels of coagulation factors like factor XIII and fibrinogen. We propose that the observed platelet phenotype is due to deficient Epac1 activity during megakaryopoiesis and thrombopoiesis, and that the defects in blood clotting for Epac1 −/− is connected to secondary hemostasis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28821815</pmid><doi>10.1038/s41598-017-08975-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2206-1480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-08, Vol.7 (1), p.8725-15, Article 8725
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f75be00c06b64f34bcf497f723b222ec
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13
13/95
14/63
631/45/612/1221
631/80/86
64/60
82/51
82/58
Adenosine Diphosphate - pharmacology
Animals
Bleeding
Blood coagulation
Blood Coagulation Factors - metabolism
Blood platelets
Blood Platelets - metabolism
Blood Platelets - ultrastructure
Bone marrow
Cell Size
Clotting
Coagulation
Coagulation factors
Collagen - pharmacology
Cytomegalovirus
Exocytosis
Fetus - metabolism
Fibrinogen
Genotype & phenotype
Guanine Nucleotide Exchange Factors - deficiency
Guanine Nucleotide Exchange Factors - metabolism
Hemoglobin
Hemorrhage - blood
Hemorrhage - metabolism
Hemostasis
Humanities and Social Sciences
Kinases
Liver - embryology
Megakaryocytes
Megakaryocytes - drug effects
Megakaryocytes - metabolism
Mice, Inbred C57BL
multidisciplinary
P-Selectin - metabolism
Phenotype
Plasma
Plasma levels
Platelet Glycoprotein GPIb-IX Complex - metabolism
Platelets
Proteins
Proteomics
Science
Science (multidisciplinary)
Thrombin - pharmacology
Thrombopoiesis
Viscoelasticity
title Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epac1-deficient%20mice%20have%20bleeding%20phenotype%20and%20thrombocytes%20with%20decreased%20GPIb%CE%B2%20expression&rft.jtitle=Scientific%20reports&rft.au=Nygaard,%20Gyrid&rft.date=2017-08-18&rft.volume=7&rft.issue=1&rft.spage=8725&rft.epage=15&rft.pages=8725-15&rft.artnum=8725&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-08975-y&rft_dat=%3Cproquest_doaj_%3E1957247439%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-df4b87938c988eb52d117db57ac636124b159a49a1073c7919e6aadd7880200c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957247439&rft_id=info:pmid/28821815&rfr_iscdi=true