Loading…

Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model

Sprouting angiogenesis-the infiltration and extension of endothelial cells from pre-existing blood vessels-helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulato...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2019-07, Vol.10 (7), p.451
Main Authors: Akbari, Ehsan, Spychalski, Griffin B, Rangharajan, Kaushik K, Prakash, Shaurya, Song, Jonathan W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3
cites cdi_FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3
container_end_page
container_issue 7
container_start_page 451
container_title Micromachines (Basel)
container_volume 10
creator Akbari, Ehsan
Spychalski, Griffin B
Rangharajan, Kaushik K
Prakash, Shaurya
Song, Jonathan W
description Sprouting angiogenesis-the infiltration and extension of endothelial cells from pre-existing blood vessels-helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.
doi_str_mv 10.3390/mi10070451
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f75d3dbc35784850bf23c7f7b0b80dec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f75d3dbc35784850bf23c7f7b0b80dec</doaj_id><sourcerecordid>2253293758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhgdRbFl74w-QgDcijOZj8jE3gq5dLbR44QfehUxyss2SmWyTGcF_b9qttTUXJ-HkOS8nb07TPCf4DWM9fjsGgrHEHSePmmOKJW2FED8f3zsfNSel7HBdUvY1PG2OGKFSdlwcN3adxj3MYdqiTVyCQ5uULRS0TtOcU0Snk0vzJcRgIvq6z2m5QcOEDGLtR3QRbE7-ujBY9ANKgYg-BL9ka-aQJnSRHMRnzRNvYoGT233VfN-cflt_bs-_fDpbvz9vLZd8bh3Hqmc9H0B1YPuOWjCD8NIR6bkVDoPDCgbVcRAdk3QQmHnARHjRKUIMWzVnB12XzE7vcxhN_q2TCfomkfJWmzwHG0F7yR1zg2Vcqk5xPHjKrPRywIPCDmzVenfQ2i_DCM5CtcPEB6IPb6ZwqbfplxZCYVbfsWpe3QrkdLVAmfUYioUYzQRpKZpSzmjPJFcVffkfuktLnqpVmvJO9X0viKjU6wNVHS8lg79rhmB9PQr63yhU-MX99u_Qvx_P_gC_GK65</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548999616</pqid></control><display><type>article</type><title>Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Akbari, Ehsan ; Spychalski, Griffin B ; Rangharajan, Kaushik K ; Prakash, Shaurya ; Song, Jonathan W</creator><creatorcontrib>Akbari, Ehsan ; Spychalski, Griffin B ; Rangharajan, Kaushik K ; Prakash, Shaurya ; Song, Jonathan W</creatorcontrib><description>Sprouting angiogenesis-the infiltration and extension of endothelial cells from pre-existing blood vessels-helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi10070451</identifier><identifier>PMID: 31277456</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Angiogenesis ; Bifurcations ; biomechanics ; Blood vessels ; Brief Report ; Cell culture ; Collagen ; Computational fluid dynamics ; Endothelial cells ; Endothelium ; Fluid flow ; Laminar flow ; Local flow ; Microfluidics ; Permeability ; Physiology ; Shear stress ; Statistical analysis ; Three dimensional models ; vessel branching</subject><ispartof>Micromachines (Basel), 2019-07, Vol.10 (7), p.451</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3</citedby><cites>FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3</cites><orcidid>0000-0001-5765-9584 ; 0000-0002-6991-5298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548999616/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548999616?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31277456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akbari, Ehsan</creatorcontrib><creatorcontrib>Spychalski, Griffin B</creatorcontrib><creatorcontrib>Rangharajan, Kaushik K</creatorcontrib><creatorcontrib>Prakash, Shaurya</creatorcontrib><creatorcontrib>Song, Jonathan W</creatorcontrib><title>Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>Sprouting angiogenesis-the infiltration and extension of endothelial cells from pre-existing blood vessels-helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.</description><subject>Angiogenesis</subject><subject>Bifurcations</subject><subject>biomechanics</subject><subject>Blood vessels</subject><subject>Brief Report</subject><subject>Cell culture</subject><subject>Collagen</subject><subject>Computational fluid dynamics</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Fluid flow</subject><subject>Laminar flow</subject><subject>Local flow</subject><subject>Microfluidics</subject><subject>Permeability</subject><subject>Physiology</subject><subject>Shear stress</subject><subject>Statistical analysis</subject><subject>Three dimensional models</subject><subject>vessel branching</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhgdRbFl74w-QgDcijOZj8jE3gq5dLbR44QfehUxyss2SmWyTGcF_b9qttTUXJ-HkOS8nb07TPCf4DWM9fjsGgrHEHSePmmOKJW2FED8f3zsfNSel7HBdUvY1PG2OGKFSdlwcN3adxj3MYdqiTVyCQ5uULRS0TtOcU0Snk0vzJcRgIvq6z2m5QcOEDGLtR3QRbE7-ujBY9ANKgYg-BL9ka-aQJnSRHMRnzRNvYoGT233VfN-cflt_bs-_fDpbvz9vLZd8bh3Hqmc9H0B1YPuOWjCD8NIR6bkVDoPDCgbVcRAdk3QQmHnARHjRKUIMWzVnB12XzE7vcxhN_q2TCfomkfJWmzwHG0F7yR1zg2Vcqk5xPHjKrPRywIPCDmzVenfQ2i_DCM5CtcPEB6IPb6ZwqbfplxZCYVbfsWpe3QrkdLVAmfUYioUYzQRpKZpSzmjPJFcVffkfuktLnqpVmvJO9X0viKjU6wNVHS8lg79rhmB9PQr63yhU-MX99u_Qvx_P_gC_GK65</recordid><startdate>20190704</startdate><enddate>20190704</enddate><creator>Akbari, Ehsan</creator><creator>Spychalski, Griffin B</creator><creator>Rangharajan, Kaushik K</creator><creator>Prakash, Shaurya</creator><creator>Song, Jonathan W</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5765-9584</orcidid><orcidid>https://orcid.org/0000-0002-6991-5298</orcidid></search><sort><creationdate>20190704</creationdate><title>Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model</title><author>Akbari, Ehsan ; Spychalski, Griffin B ; Rangharajan, Kaushik K ; Prakash, Shaurya ; Song, Jonathan W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angiogenesis</topic><topic>Bifurcations</topic><topic>biomechanics</topic><topic>Blood vessels</topic><topic>Brief Report</topic><topic>Cell culture</topic><topic>Collagen</topic><topic>Computational fluid dynamics</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Fluid flow</topic><topic>Laminar flow</topic><topic>Local flow</topic><topic>Microfluidics</topic><topic>Permeability</topic><topic>Physiology</topic><topic>Shear stress</topic><topic>Statistical analysis</topic><topic>Three dimensional models</topic><topic>vessel branching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbari, Ehsan</creatorcontrib><creatorcontrib>Spychalski, Griffin B</creatorcontrib><creatorcontrib>Rangharajan, Kaushik K</creatorcontrib><creatorcontrib>Prakash, Shaurya</creatorcontrib><creatorcontrib>Song, Jonathan W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbari, Ehsan</au><au>Spychalski, Griffin B</au><au>Rangharajan, Kaushik K</au><au>Prakash, Shaurya</au><au>Song, Jonathan W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2019-07-04</date><risdate>2019</risdate><volume>10</volume><issue>7</issue><spage>451</spage><pages>451-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>Sprouting angiogenesis-the infiltration and extension of endothelial cells from pre-existing blood vessels-helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31277456</pmid><doi>10.3390/mi10070451</doi><orcidid>https://orcid.org/0000-0001-5765-9584</orcidid><orcidid>https://orcid.org/0000-0002-6991-5298</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2019-07, Vol.10 (7), p.451
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f75d3dbc35784850bf23c7f7b0b80dec
source Publicly Available Content Database; PubMed Central
subjects Angiogenesis
Bifurcations
biomechanics
Blood vessels
Brief Report
Cell culture
Collagen
Computational fluid dynamics
Endothelial cells
Endothelium
Fluid flow
Laminar flow
Local flow
Microfluidics
Permeability
Physiology
Shear stress
Statistical analysis
Three dimensional models
vessel branching
title Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competing%20Fluid%20Forces%20Control%20Endothelial%20Sprouting%20in%20a%203-D%20Microfluidic%20Vessel%20Bifurcation%20Model&rft.jtitle=Micromachines%20(Basel)&rft.au=Akbari,%20Ehsan&rft.date=2019-07-04&rft.volume=10&rft.issue=7&rft.spage=451&rft.pages=451-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi10070451&rft_dat=%3Cproquest_doaj_%3E2253293758%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548999616&rft_id=info:pmid/31277456&rfr_iscdi=true