Loading…
Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model
Sprouting angiogenesis-the infiltration and extension of endothelial cells from pre-existing blood vessels-helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulato...
Saved in:
Published in: | Micromachines (Basel) 2019-07, Vol.10 (7), p.451 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3 |
container_end_page | |
container_issue | 7 |
container_start_page | 451 |
container_title | Micromachines (Basel) |
container_volume | 10 |
creator | Akbari, Ehsan Spychalski, Griffin B Rangharajan, Kaushik K Prakash, Shaurya Song, Jonathan W |
description | Sprouting angiogenesis-the infiltration and extension of endothelial cells from pre-existing blood vessels-helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm
applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis. |
doi_str_mv | 10.3390/mi10070451 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f75d3dbc35784850bf23c7f7b0b80dec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f75d3dbc35784850bf23c7f7b0b80dec</doaj_id><sourcerecordid>2253293758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhgdRbFl74w-QgDcijOZj8jE3gq5dLbR44QfehUxyss2SmWyTGcF_b9qttTUXJ-HkOS8nb07TPCf4DWM9fjsGgrHEHSePmmOKJW2FED8f3zsfNSel7HBdUvY1PG2OGKFSdlwcN3adxj3MYdqiTVyCQ5uULRS0TtOcU0Snk0vzJcRgIvq6z2m5QcOEDGLtR3QRbE7-ujBY9ANKgYg-BL9ka-aQJnSRHMRnzRNvYoGT233VfN-cflt_bs-_fDpbvz9vLZd8bh3Hqmc9H0B1YPuOWjCD8NIR6bkVDoPDCgbVcRAdk3QQmHnARHjRKUIMWzVnB12XzE7vcxhN_q2TCfomkfJWmzwHG0F7yR1zg2Vcqk5xPHjKrPRywIPCDmzVenfQ2i_DCM5CtcPEB6IPb6ZwqbfplxZCYVbfsWpe3QrkdLVAmfUYioUYzQRpKZpSzmjPJFcVffkfuktLnqpVmvJO9X0viKjU6wNVHS8lg79rhmB9PQr63yhU-MX99u_Qvx_P_gC_GK65</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548999616</pqid></control><display><type>article</type><title>Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Akbari, Ehsan ; Spychalski, Griffin B ; Rangharajan, Kaushik K ; Prakash, Shaurya ; Song, Jonathan W</creator><creatorcontrib>Akbari, Ehsan ; Spychalski, Griffin B ; Rangharajan, Kaushik K ; Prakash, Shaurya ; Song, Jonathan W</creatorcontrib><description>Sprouting angiogenesis-the infiltration and extension of endothelial cells from pre-existing blood vessels-helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm
applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi10070451</identifier><identifier>PMID: 31277456</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Angiogenesis ; Bifurcations ; biomechanics ; Blood vessels ; Brief Report ; Cell culture ; Collagen ; Computational fluid dynamics ; Endothelial cells ; Endothelium ; Fluid flow ; Laminar flow ; Local flow ; Microfluidics ; Permeability ; Physiology ; Shear stress ; Statistical analysis ; Three dimensional models ; vessel branching</subject><ispartof>Micromachines (Basel), 2019-07, Vol.10 (7), p.451</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3</citedby><cites>FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3</cites><orcidid>0000-0001-5765-9584 ; 0000-0002-6991-5298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548999616/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548999616?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31277456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akbari, Ehsan</creatorcontrib><creatorcontrib>Spychalski, Griffin B</creatorcontrib><creatorcontrib>Rangharajan, Kaushik K</creatorcontrib><creatorcontrib>Prakash, Shaurya</creatorcontrib><creatorcontrib>Song, Jonathan W</creatorcontrib><title>Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>Sprouting angiogenesis-the infiltration and extension of endothelial cells from pre-existing blood vessels-helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm
applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.</description><subject>Angiogenesis</subject><subject>Bifurcations</subject><subject>biomechanics</subject><subject>Blood vessels</subject><subject>Brief Report</subject><subject>Cell culture</subject><subject>Collagen</subject><subject>Computational fluid dynamics</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Fluid flow</subject><subject>Laminar flow</subject><subject>Local flow</subject><subject>Microfluidics</subject><subject>Permeability</subject><subject>Physiology</subject><subject>Shear stress</subject><subject>Statistical analysis</subject><subject>Three dimensional models</subject><subject>vessel branching</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhgdRbFl74w-QgDcijOZj8jE3gq5dLbR44QfehUxyss2SmWyTGcF_b9qttTUXJ-HkOS8nb07TPCf4DWM9fjsGgrHEHSePmmOKJW2FED8f3zsfNSel7HBdUvY1PG2OGKFSdlwcN3adxj3MYdqiTVyCQ5uULRS0TtOcU0Snk0vzJcRgIvq6z2m5QcOEDGLtR3QRbE7-ujBY9ANKgYg-BL9ka-aQJnSRHMRnzRNvYoGT233VfN-cflt_bs-_fDpbvz9vLZd8bh3Hqmc9H0B1YPuOWjCD8NIR6bkVDoPDCgbVcRAdk3QQmHnARHjRKUIMWzVnB12XzE7vcxhN_q2TCfomkfJWmzwHG0F7yR1zg2Vcqk5xPHjKrPRywIPCDmzVenfQ2i_DCM5CtcPEB6IPb6ZwqbfplxZCYVbfsWpe3QrkdLVAmfUYioUYzQRpKZpSzmjPJFcVffkfuktLnqpVmvJO9X0viKjU6wNVHS8lg79rhmB9PQr63yhU-MX99u_Qvx_P_gC_GK65</recordid><startdate>20190704</startdate><enddate>20190704</enddate><creator>Akbari, Ehsan</creator><creator>Spychalski, Griffin B</creator><creator>Rangharajan, Kaushik K</creator><creator>Prakash, Shaurya</creator><creator>Song, Jonathan W</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5765-9584</orcidid><orcidid>https://orcid.org/0000-0002-6991-5298</orcidid></search><sort><creationdate>20190704</creationdate><title>Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model</title><author>Akbari, Ehsan ; Spychalski, Griffin B ; Rangharajan, Kaushik K ; Prakash, Shaurya ; Song, Jonathan W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angiogenesis</topic><topic>Bifurcations</topic><topic>biomechanics</topic><topic>Blood vessels</topic><topic>Brief Report</topic><topic>Cell culture</topic><topic>Collagen</topic><topic>Computational fluid dynamics</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Fluid flow</topic><topic>Laminar flow</topic><topic>Local flow</topic><topic>Microfluidics</topic><topic>Permeability</topic><topic>Physiology</topic><topic>Shear stress</topic><topic>Statistical analysis</topic><topic>Three dimensional models</topic><topic>vessel branching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbari, Ehsan</creatorcontrib><creatorcontrib>Spychalski, Griffin B</creatorcontrib><creatorcontrib>Rangharajan, Kaushik K</creatorcontrib><creatorcontrib>Prakash, Shaurya</creatorcontrib><creatorcontrib>Song, Jonathan W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbari, Ehsan</au><au>Spychalski, Griffin B</au><au>Rangharajan, Kaushik K</au><au>Prakash, Shaurya</au><au>Song, Jonathan W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2019-07-04</date><risdate>2019</risdate><volume>10</volume><issue>7</issue><spage>451</spage><pages>451-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>Sprouting angiogenesis-the infiltration and extension of endothelial cells from pre-existing blood vessels-helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm
applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31277456</pmid><doi>10.3390/mi10070451</doi><orcidid>https://orcid.org/0000-0001-5765-9584</orcidid><orcidid>https://orcid.org/0000-0002-6991-5298</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-666X |
ispartof | Micromachines (Basel), 2019-07, Vol.10 (7), p.451 |
issn | 2072-666X 2072-666X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f75d3dbc35784850bf23c7f7b0b80dec |
source | Publicly Available Content Database; PubMed Central |
subjects | Angiogenesis Bifurcations biomechanics Blood vessels Brief Report Cell culture Collagen Computational fluid dynamics Endothelial cells Endothelium Fluid flow Laminar flow Local flow Microfluidics Permeability Physiology Shear stress Statistical analysis Three dimensional models vessel branching |
title | Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competing%20Fluid%20Forces%20Control%20Endothelial%20Sprouting%20in%20a%203-D%20Microfluidic%20Vessel%20Bifurcation%20Model&rft.jtitle=Micromachines%20(Basel)&rft.au=Akbari,%20Ehsan&rft.date=2019-07-04&rft.volume=10&rft.issue=7&rft.spage=451&rft.pages=451-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi10070451&rft_dat=%3Cproquest_doaj_%3E2253293758%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c575t-d5089395be84ec942ceab6f7d17f5c6d0ed08eb845e64372b603fe016f64811a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548999616&rft_id=info:pmid/31277456&rfr_iscdi=true |