Loading…

Application of neurocomputing for data approximation and classification in wireless sensor networks

A new application of neurocomputing for data approximation and classification is introduced to process data in a wireless sensor network. For this purpose, a simplified dynamic sliding backpropagation algorithm is implemented on a wireless sensor network for transportation applications. It is able t...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2009-04, Vol.9 (4), p.3056-3077
Main Authors: Jabbari, Amir, Jedermann, Reiner, Muthuraman, Ramanan, Lang, Walter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-5b95b6c5c597d5b54cd2a574eca8b85a7818ae7148aa425907035256e8dec3e23
cites cdi_FETCH-LOGICAL-c469t-5b95b6c5c597d5b54cd2a574eca8b85a7818ae7148aa425907035256e8dec3e23
container_end_page 3077
container_issue 4
container_start_page 3056
container_title Sensors (Basel, Switzerland)
container_volume 9
creator Jabbari, Amir
Jedermann, Reiner
Muthuraman, Ramanan
Lang, Walter
description A new application of neurocomputing for data approximation and classification is introduced to process data in a wireless sensor network. For this purpose, a simplified dynamic sliding backpropagation algorithm is implemented on a wireless sensor network for transportation applications. It is able to approximate temperature and humidity in sensor nodes. In addition, two architectures of "radial basis function" (RBF) classifiers are introduced with probabilistic features for data classification in sensor nodes. The applied approximation and classification algorithms could be used in similar applications for data processing in embedded systems.
doi_str_mv 10.3390/s90403056
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f777f47cdc15487295ad5ab7455fad04</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f777f47cdc15487295ad5ab7455fad04</doaj_id><sourcerecordid>3340411691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-5b95b6c5c597d5b54cd2a574eca8b85a7818ae7148aa425907035256e8dec3e23</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhi1ERT_gwB9AkbjAYcGxPbFzQaqqUipV6gXO1sSeLF6ydrCTlv57UrZdtZxs2c88escext7W_JOULf9cWq645NC8YEe1EmplhOAvn-wP2XEpG86FlNK8YodCgFa8EUfMnY7jEBxOIcUq9VWkOSeXtuM8hbiu-pQrjxNWOI45_QnbHYjRV27AUkL_WBtidRsyDVRKVSiWpTDSdJvyr_KaHfQ4FHrzsJ6wH1_Pv599W11dX1yenV6tnGraaQVdC13jwEGrPXSgnBe45CSHpjOA2tQGSdfKICoBLddcgoCGjCcnScgTdrnz-oQbO-Ylbb6zCYP9d5Dy2mKeghvI9lrrXmnnXQ3KaNECesBOK4AePVeL68vONc7dlryjOGUcnkmf38Tw067TjZVSNZK3i-DDgyCn3zOVyW5DcTQMGCnNxda8FlopLfmCvv8P3aQ5x-WpbA1Sg260vO_u445yOZWSqd-Hqbm9HwO7H4OFffc0_Z58_Hf5F3p6rpw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537576732</pqid></control><display><type>article</type><title>Application of neurocomputing for data approximation and classification in wireless sensor networks</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Jabbari, Amir ; Jedermann, Reiner ; Muthuraman, Ramanan ; Lang, Walter</creator><creatorcontrib>Jabbari, Amir ; Jedermann, Reiner ; Muthuraman, Ramanan ; Lang, Walter</creatorcontrib><description>A new application of neurocomputing for data approximation and classification is introduced to process data in a wireless sensor network. For this purpose, a simplified dynamic sliding backpropagation algorithm is implemented on a wireless sensor network for transportation applications. It is able to approximate temperature and humidity in sensor nodes. In addition, two architectures of "radial basis function" (RBF) classifiers are introduced with probabilistic features for data classification in sensor nodes. The applied approximation and classification algorithms could be used in similar applications for data processing in embedded systems.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s90403056</identifier><identifier>PMID: 22574062</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Approximation ; Back propagation ; Classification ; Data processing ; Decision making ; distributed Data approximation and classification ; Embedded systems ; Humidity ; Neural networks ; Radial basis function ; Sensors ; wireless sensor network</subject><ispartof>Sensors (Basel, Switzerland), 2009-04, Vol.9 (4), p.3056-3077</ispartof><rights>Copyright MDPI AG 2009</rights><rights>2009 by the authors; licensee MDPI, Basel, Switzerland 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-5b95b6c5c597d5b54cd2a574eca8b85a7818ae7148aa425907035256e8dec3e23</citedby><cites>FETCH-LOGICAL-c469t-5b95b6c5c597d5b54cd2a574eca8b85a7818ae7148aa425907035256e8dec3e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1537576732/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1537576732?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22574062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jabbari, Amir</creatorcontrib><creatorcontrib>Jedermann, Reiner</creatorcontrib><creatorcontrib>Muthuraman, Ramanan</creatorcontrib><creatorcontrib>Lang, Walter</creatorcontrib><title>Application of neurocomputing for data approximation and classification in wireless sensor networks</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>A new application of neurocomputing for data approximation and classification is introduced to process data in a wireless sensor network. For this purpose, a simplified dynamic sliding backpropagation algorithm is implemented on a wireless sensor network for transportation applications. It is able to approximate temperature and humidity in sensor nodes. In addition, two architectures of "radial basis function" (RBF) classifiers are introduced with probabilistic features for data classification in sensor nodes. The applied approximation and classification algorithms could be used in similar applications for data processing in embedded systems.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Back propagation</subject><subject>Classification</subject><subject>Data processing</subject><subject>Decision making</subject><subject>distributed Data approximation and classification</subject><subject>Embedded systems</subject><subject>Humidity</subject><subject>Neural networks</subject><subject>Radial basis function</subject><subject>Sensors</subject><subject>wireless sensor network</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhi1ERT_gwB9AkbjAYcGxPbFzQaqqUipV6gXO1sSeLF6ydrCTlv57UrZdtZxs2c88escext7W_JOULf9cWq645NC8YEe1EmplhOAvn-wP2XEpG86FlNK8YodCgFa8EUfMnY7jEBxOIcUq9VWkOSeXtuM8hbiu-pQrjxNWOI45_QnbHYjRV27AUkL_WBtidRsyDVRKVSiWpTDSdJvyr_KaHfQ4FHrzsJ6wH1_Pv599W11dX1yenV6tnGraaQVdC13jwEGrPXSgnBe45CSHpjOA2tQGSdfKICoBLddcgoCGjCcnScgTdrnz-oQbO-Ylbb6zCYP9d5Dy2mKeghvI9lrrXmnnXQ3KaNECesBOK4AePVeL68vONc7dlryjOGUcnkmf38Tw067TjZVSNZK3i-DDgyCn3zOVyW5DcTQMGCnNxda8FlopLfmCvv8P3aQ5x-WpbA1Sg260vO_u445yOZWSqd-Hqbm9HwO7H4OFffc0_Z58_Hf5F3p6rpw</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Jabbari, Amir</creator><creator>Jedermann, Reiner</creator><creator>Muthuraman, Ramanan</creator><creator>Lang, Walter</creator><general>MDPI AG</general><general>Molecular Diversity Preservation International (MDPI)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090401</creationdate><title>Application of neurocomputing for data approximation and classification in wireless sensor networks</title><author>Jabbari, Amir ; Jedermann, Reiner ; Muthuraman, Ramanan ; Lang, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-5b95b6c5c597d5b54cd2a574eca8b85a7818ae7148aa425907035256e8dec3e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Back propagation</topic><topic>Classification</topic><topic>Data processing</topic><topic>Decision making</topic><topic>distributed Data approximation and classification</topic><topic>Embedded systems</topic><topic>Humidity</topic><topic>Neural networks</topic><topic>Radial basis function</topic><topic>Sensors</topic><topic>wireless sensor network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabbari, Amir</creatorcontrib><creatorcontrib>Jedermann, Reiner</creatorcontrib><creatorcontrib>Muthuraman, Ramanan</creatorcontrib><creatorcontrib>Lang, Walter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabbari, Amir</au><au>Jedermann, Reiner</au><au>Muthuraman, Ramanan</au><au>Lang, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of neurocomputing for data approximation and classification in wireless sensor networks</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>9</volume><issue>4</issue><spage>3056</spage><epage>3077</epage><pages>3056-3077</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>A new application of neurocomputing for data approximation and classification is introduced to process data in a wireless sensor network. For this purpose, a simplified dynamic sliding backpropagation algorithm is implemented on a wireless sensor network for transportation applications. It is able to approximate temperature and humidity in sensor nodes. In addition, two architectures of "radial basis function" (RBF) classifiers are introduced with probabilistic features for data classification in sensor nodes. The applied approximation and classification algorithms could be used in similar applications for data processing in embedded systems.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>22574062</pmid><doi>10.3390/s90403056</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2009-04, Vol.9 (4), p.3056-3077
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f777f47cdc15487295ad5ab7455fad04
source Open Access: PubMed Central; Publicly Available Content Database
subjects Accuracy
Algorithms
Approximation
Back propagation
Classification
Data processing
Decision making
distributed Data approximation and classification
Embedded systems
Humidity
Neural networks
Radial basis function
Sensors
wireless sensor network
title Application of neurocomputing for data approximation and classification in wireless sensor networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20neurocomputing%20for%20data%20approximation%20and%20classification%20in%20wireless%20sensor%20networks&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Jabbari,%20Amir&rft.date=2009-04-01&rft.volume=9&rft.issue=4&rft.spage=3056&rft.epage=3077&rft.pages=3056-3077&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s90403056&rft_dat=%3Cproquest_doaj_%3E3340411691%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-5b95b6c5c597d5b54cd2a574eca8b85a7818ae7148aa425907035256e8dec3e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1537576732&rft_id=info:pmid/22574062&rfr_iscdi=true