Loading…
Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions
Recently, deep learning algorithms have been widely into fault diagnosis in the intelligent manufacturing field. To tackle the transfer problem due to various working conditions and insufficient labeled samples, a conditional maximum mean discrepancy (CMMD) based domain adaptation method is proposed...
Saved in:
Published in: | MATEC web of conferences 2020, Vol.319, p.3001 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3 |
container_end_page | |
container_issue | |
container_start_page | 3001 |
container_title | MATEC web of conferences |
container_volume | 319 |
creator | Li, Weigui Yuan, Zhuqing Sun, Wenyu Liu, Yongpan |
description | Recently, deep learning algorithms have been widely into fault diagnosis in the intelligent manufacturing field. To tackle the transfer problem due to various working conditions and insufficient labeled samples, a conditional maximum mean discrepancy (CMMD) based domain adaptation method is proposed. Existing transfer approaches mainly focus on aligning the single representation distributions, which only contains partial feature information. Inspired by the Inception module, multi-representation domain adaptation is introduced to improve classification accuracy and generalization ability for cross-domain bearing fault diagnosis. And CMMD-based method is adopted to minimize the discrepancy between the source and the target. Finally, the unsupervised learning method with unlabeled target data can promote the practical application of the proposed algorithm. According to the experimental results on the standard dataset, the proposed method can effectively alleviate the domain shift problem. |
doi_str_mv | 10.1051/matecconf/202031903001 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f7ab40eb853a4bf4b6c24534b677dce5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f7ab40eb853a4bf4b6c24534b677dce5</doaj_id><sourcerecordid>2442615646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3</originalsourceid><addsrcrecordid>eNpNUctKAzEUHUTBUvsLMuC69uYxk5llaa0WCm4qugt5ltRpUpPMwr93aqW4OvdxOPdwT1HcI3hEUKHZQWSjVPB2hgEDQS0QAHRVjDCu0RST-uP6X31bTFLaw8AgLYOWjYrtMhyE8-Vci2MW2QVf2hDLtc-m69zO-FyuRN_lcunEzofkUtl7beLQW2viaf8e4qfzu3IRvHYnhXRX3FjRJTP5w3HxtnraLl6mm9fn9WK-mSqCWZ5W1kjEDGNgKkuo1g0oUFIS0WhEMdLMgmmVbiyjTDKgjSCtQmowLitQhoyL9VlXB7Hnx-gOIn7zIBz_HYS44yJmpzrDLROSgpFNRQSVlspaYVqRARnTylSD1sNZ6xjDV29S5vvQRz_Y55jS4YFVTeuBVZ9ZKoaUorGXqwj4KRB-CYT_D4T8AKxngaU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442615646</pqid></control><display><type>article</type><title>Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions</title><source>Publicly Available Content Database</source><creator>Li, Weigui ; Yuan, Zhuqing ; Sun, Wenyu ; Liu, Yongpan</creator><contributor>Jisheng, P. ; Es-Said, O.S.</contributor><creatorcontrib>Li, Weigui ; Yuan, Zhuqing ; Sun, Wenyu ; Liu, Yongpan ; Jisheng, P. ; Es-Said, O.S.</creatorcontrib><description>Recently, deep learning algorithms have been widely into fault diagnosis in the intelligent manufacturing field. To tackle the transfer problem due to various working conditions and insufficient labeled samples, a conditional maximum mean discrepancy (CMMD) based domain adaptation method is proposed. Existing transfer approaches mainly focus on aligning the single representation distributions, which only contains partial feature information. Inspired by the Inception module, multi-representation domain adaptation is introduced to improve classification accuracy and generalization ability for cross-domain bearing fault diagnosis. And CMMD-based method is adopted to minimize the discrepancy between the source and the target. Finally, the unsupervised learning method with unlabeled target data can promote the practical application of the proposed algorithm. According to the experimental results on the standard dataset, the proposed method can effectively alleviate the domain shift problem.</description><identifier>ISSN: 2261-236X</identifier><identifier>ISSN: 2274-7214</identifier><identifier>EISSN: 2261-236X</identifier><identifier>DOI: 10.1051/matecconf/202031903001</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Adaptation ; Algorithms ; Domains ; Fault diagnosis ; Intelligent manufacturing systems ; Machine learning ; Representations ; Working conditions</subject><ispartof>MATEC web of conferences, 2020, Vol.319, p.3001</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3</citedby><cites>FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2442615646?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4024,23930,23931,25140,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Jisheng, P.</contributor><contributor>Es-Said, O.S.</contributor><creatorcontrib>Li, Weigui</creatorcontrib><creatorcontrib>Yuan, Zhuqing</creatorcontrib><creatorcontrib>Sun, Wenyu</creatorcontrib><creatorcontrib>Liu, Yongpan</creatorcontrib><title>Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions</title><title>MATEC web of conferences</title><description>Recently, deep learning algorithms have been widely into fault diagnosis in the intelligent manufacturing field. To tackle the transfer problem due to various working conditions and insufficient labeled samples, a conditional maximum mean discrepancy (CMMD) based domain adaptation method is proposed. Existing transfer approaches mainly focus on aligning the single representation distributions, which only contains partial feature information. Inspired by the Inception module, multi-representation domain adaptation is introduced to improve classification accuracy and generalization ability for cross-domain bearing fault diagnosis. And CMMD-based method is adopted to minimize the discrepancy between the source and the target. Finally, the unsupervised learning method with unlabeled target data can promote the practical application of the proposed algorithm. According to the experimental results on the standard dataset, the proposed method can effectively alleviate the domain shift problem.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Domains</subject><subject>Fault diagnosis</subject><subject>Intelligent manufacturing systems</subject><subject>Machine learning</subject><subject>Representations</subject><subject>Working conditions</subject><issn>2261-236X</issn><issn>2274-7214</issn><issn>2261-236X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKAzEUHUTBUvsLMuC69uYxk5llaa0WCm4qugt5ltRpUpPMwr93aqW4OvdxOPdwT1HcI3hEUKHZQWSjVPB2hgEDQS0QAHRVjDCu0RST-uP6X31bTFLaw8AgLYOWjYrtMhyE8-Vci2MW2QVf2hDLtc-m69zO-FyuRN_lcunEzofkUtl7beLQW2viaf8e4qfzu3IRvHYnhXRX3FjRJTP5w3HxtnraLl6mm9fn9WK-mSqCWZ5W1kjEDGNgKkuo1g0oUFIS0WhEMdLMgmmVbiyjTDKgjSCtQmowLitQhoyL9VlXB7Hnx-gOIn7zIBz_HYS44yJmpzrDLROSgpFNRQSVlspaYVqRARnTylSD1sNZ6xjDV29S5vvQRz_Y55jS4YFVTeuBVZ9ZKoaUorGXqwj4KRB-CYT_D4T8AKxngaU</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Weigui</creator><creator>Yuan, Zhuqing</creator><creator>Sun, Wenyu</creator><creator>Liu, Yongpan</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions</title><author>Li, Weigui ; Yuan, Zhuqing ; Sun, Wenyu ; Liu, Yongpan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Domains</topic><topic>Fault diagnosis</topic><topic>Intelligent manufacturing systems</topic><topic>Machine learning</topic><topic>Representations</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weigui</creatorcontrib><creatorcontrib>Yuan, Zhuqing</creatorcontrib><creatorcontrib>Sun, Wenyu</creatorcontrib><creatorcontrib>Liu, Yongpan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>MATEC web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weigui</au><au>Yuan, Zhuqing</au><au>Sun, Wenyu</au><au>Liu, Yongpan</au><au>Jisheng, P.</au><au>Es-Said, O.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions</atitle><jtitle>MATEC web of conferences</jtitle><date>2020</date><risdate>2020</risdate><volume>319</volume><spage>3001</spage><pages>3001-</pages><issn>2261-236X</issn><issn>2274-7214</issn><eissn>2261-236X</eissn><abstract>Recently, deep learning algorithms have been widely into fault diagnosis in the intelligent manufacturing field. To tackle the transfer problem due to various working conditions and insufficient labeled samples, a conditional maximum mean discrepancy (CMMD) based domain adaptation method is proposed. Existing transfer approaches mainly focus on aligning the single representation distributions, which only contains partial feature information. Inspired by the Inception module, multi-representation domain adaptation is introduced to improve classification accuracy and generalization ability for cross-domain bearing fault diagnosis. And CMMD-based method is adopted to minimize the discrepancy between the source and the target. Finally, the unsupervised learning method with unlabeled target data can promote the practical application of the proposed algorithm. According to the experimental results on the standard dataset, the proposed method can effectively alleviate the domain shift problem.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/matecconf/202031903001</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2261-236X |
ispartof | MATEC web of conferences, 2020, Vol.319, p.3001 |
issn | 2261-236X 2274-7214 2261-236X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f7ab40eb853a4bf4b6c24534b677dce5 |
source | Publicly Available Content Database |
subjects | Adaptation Algorithms Domains Fault diagnosis Intelligent manufacturing systems Machine learning Representations Working conditions |
title | Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20Adaptation%20for%20Intelligent%20Fault%20Diagnosis%20under%20Different%20Working%20Conditions&rft.jtitle=MATEC%20web%20of%20conferences&rft.au=Li,%20Weigui&rft.date=2020&rft.volume=319&rft.spage=3001&rft.pages=3001-&rft.issn=2261-236X&rft.eissn=2261-236X&rft_id=info:doi/10.1051/matecconf/202031903001&rft_dat=%3Cproquest_doaj_%3E2442615646%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442615646&rft_id=info:pmid/&rfr_iscdi=true |