Loading…

Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions

Recently, deep learning algorithms have been widely into fault diagnosis in the intelligent manufacturing field. To tackle the transfer problem due to various working conditions and insufficient labeled samples, a conditional maximum mean discrepancy (CMMD) based domain adaptation method is proposed...

Full description

Saved in:
Bibliographic Details
Published in:MATEC web of conferences 2020, Vol.319, p.3001
Main Authors: Li, Weigui, Yuan, Zhuqing, Sun, Wenyu, Liu, Yongpan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3
cites cdi_FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3
container_end_page
container_issue
container_start_page 3001
container_title MATEC web of conferences
container_volume 319
creator Li, Weigui
Yuan, Zhuqing
Sun, Wenyu
Liu, Yongpan
description Recently, deep learning algorithms have been widely into fault diagnosis in the intelligent manufacturing field. To tackle the transfer problem due to various working conditions and insufficient labeled samples, a conditional maximum mean discrepancy (CMMD) based domain adaptation method is proposed. Existing transfer approaches mainly focus on aligning the single representation distributions, which only contains partial feature information. Inspired by the Inception module, multi-representation domain adaptation is introduced to improve classification accuracy and generalization ability for cross-domain bearing fault diagnosis. And CMMD-based method is adopted to minimize the discrepancy between the source and the target. Finally, the unsupervised learning method with unlabeled target data can promote the practical application of the proposed algorithm. According to the experimental results on the standard dataset, the proposed method can effectively alleviate the domain shift problem.
doi_str_mv 10.1051/matecconf/202031903001
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f7ab40eb853a4bf4b6c24534b677dce5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f7ab40eb853a4bf4b6c24534b677dce5</doaj_id><sourcerecordid>2442615646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3</originalsourceid><addsrcrecordid>eNpNUctKAzEUHUTBUvsLMuC69uYxk5llaa0WCm4qugt5ltRpUpPMwr93aqW4OvdxOPdwT1HcI3hEUKHZQWSjVPB2hgEDQS0QAHRVjDCu0RST-uP6X31bTFLaw8AgLYOWjYrtMhyE8-Vci2MW2QVf2hDLtc-m69zO-FyuRN_lcunEzofkUtl7beLQW2viaf8e4qfzu3IRvHYnhXRX3FjRJTP5w3HxtnraLl6mm9fn9WK-mSqCWZ5W1kjEDGNgKkuo1g0oUFIS0WhEMdLMgmmVbiyjTDKgjSCtQmowLitQhoyL9VlXB7Hnx-gOIn7zIBz_HYS44yJmpzrDLROSgpFNRQSVlspaYVqRARnTylSD1sNZ6xjDV29S5vvQRz_Y55jS4YFVTeuBVZ9ZKoaUorGXqwj4KRB-CYT_D4T8AKxngaU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442615646</pqid></control><display><type>article</type><title>Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions</title><source>Publicly Available Content Database</source><creator>Li, Weigui ; Yuan, Zhuqing ; Sun, Wenyu ; Liu, Yongpan</creator><contributor>Jisheng, P. ; Es-Said, O.S.</contributor><creatorcontrib>Li, Weigui ; Yuan, Zhuqing ; Sun, Wenyu ; Liu, Yongpan ; Jisheng, P. ; Es-Said, O.S.</creatorcontrib><description>Recently, deep learning algorithms have been widely into fault diagnosis in the intelligent manufacturing field. To tackle the transfer problem due to various working conditions and insufficient labeled samples, a conditional maximum mean discrepancy (CMMD) based domain adaptation method is proposed. Existing transfer approaches mainly focus on aligning the single representation distributions, which only contains partial feature information. Inspired by the Inception module, multi-representation domain adaptation is introduced to improve classification accuracy and generalization ability for cross-domain bearing fault diagnosis. And CMMD-based method is adopted to minimize the discrepancy between the source and the target. Finally, the unsupervised learning method with unlabeled target data can promote the practical application of the proposed algorithm. According to the experimental results on the standard dataset, the proposed method can effectively alleviate the domain shift problem.</description><identifier>ISSN: 2261-236X</identifier><identifier>ISSN: 2274-7214</identifier><identifier>EISSN: 2261-236X</identifier><identifier>DOI: 10.1051/matecconf/202031903001</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Adaptation ; Algorithms ; Domains ; Fault diagnosis ; Intelligent manufacturing systems ; Machine learning ; Representations ; Working conditions</subject><ispartof>MATEC web of conferences, 2020, Vol.319, p.3001</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3</citedby><cites>FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2442615646?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4024,23930,23931,25140,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Jisheng, P.</contributor><contributor>Es-Said, O.S.</contributor><creatorcontrib>Li, Weigui</creatorcontrib><creatorcontrib>Yuan, Zhuqing</creatorcontrib><creatorcontrib>Sun, Wenyu</creatorcontrib><creatorcontrib>Liu, Yongpan</creatorcontrib><title>Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions</title><title>MATEC web of conferences</title><description>Recently, deep learning algorithms have been widely into fault diagnosis in the intelligent manufacturing field. To tackle the transfer problem due to various working conditions and insufficient labeled samples, a conditional maximum mean discrepancy (CMMD) based domain adaptation method is proposed. Existing transfer approaches mainly focus on aligning the single representation distributions, which only contains partial feature information. Inspired by the Inception module, multi-representation domain adaptation is introduced to improve classification accuracy and generalization ability for cross-domain bearing fault diagnosis. And CMMD-based method is adopted to minimize the discrepancy between the source and the target. Finally, the unsupervised learning method with unlabeled target data can promote the practical application of the proposed algorithm. According to the experimental results on the standard dataset, the proposed method can effectively alleviate the domain shift problem.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Domains</subject><subject>Fault diagnosis</subject><subject>Intelligent manufacturing systems</subject><subject>Machine learning</subject><subject>Representations</subject><subject>Working conditions</subject><issn>2261-236X</issn><issn>2274-7214</issn><issn>2261-236X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKAzEUHUTBUvsLMuC69uYxk5llaa0WCm4qugt5ltRpUpPMwr93aqW4OvdxOPdwT1HcI3hEUKHZQWSjVPB2hgEDQS0QAHRVjDCu0RST-uP6X31bTFLaw8AgLYOWjYrtMhyE8-Vci2MW2QVf2hDLtc-m69zO-FyuRN_lcunEzofkUtl7beLQW2viaf8e4qfzu3IRvHYnhXRX3FjRJTP5w3HxtnraLl6mm9fn9WK-mSqCWZ5W1kjEDGNgKkuo1g0oUFIS0WhEMdLMgmmVbiyjTDKgjSCtQmowLitQhoyL9VlXB7Hnx-gOIn7zIBz_HYS44yJmpzrDLROSgpFNRQSVlspaYVqRARnTylSD1sNZ6xjDV29S5vvQRz_Y55jS4YFVTeuBVZ9ZKoaUorGXqwj4KRB-CYT_D4T8AKxngaU</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Weigui</creator><creator>Yuan, Zhuqing</creator><creator>Sun, Wenyu</creator><creator>Liu, Yongpan</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions</title><author>Li, Weigui ; Yuan, Zhuqing ; Sun, Wenyu ; Liu, Yongpan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Domains</topic><topic>Fault diagnosis</topic><topic>Intelligent manufacturing systems</topic><topic>Machine learning</topic><topic>Representations</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weigui</creatorcontrib><creatorcontrib>Yuan, Zhuqing</creatorcontrib><creatorcontrib>Sun, Wenyu</creatorcontrib><creatorcontrib>Liu, Yongpan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>MATEC web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weigui</au><au>Yuan, Zhuqing</au><au>Sun, Wenyu</au><au>Liu, Yongpan</au><au>Jisheng, P.</au><au>Es-Said, O.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions</atitle><jtitle>MATEC web of conferences</jtitle><date>2020</date><risdate>2020</risdate><volume>319</volume><spage>3001</spage><pages>3001-</pages><issn>2261-236X</issn><issn>2274-7214</issn><eissn>2261-236X</eissn><abstract>Recently, deep learning algorithms have been widely into fault diagnosis in the intelligent manufacturing field. To tackle the transfer problem due to various working conditions and insufficient labeled samples, a conditional maximum mean discrepancy (CMMD) based domain adaptation method is proposed. Existing transfer approaches mainly focus on aligning the single representation distributions, which only contains partial feature information. Inspired by the Inception module, multi-representation domain adaptation is introduced to improve classification accuracy and generalization ability for cross-domain bearing fault diagnosis. And CMMD-based method is adopted to minimize the discrepancy between the source and the target. Finally, the unsupervised learning method with unlabeled target data can promote the practical application of the proposed algorithm. According to the experimental results on the standard dataset, the proposed method can effectively alleviate the domain shift problem.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/matecconf/202031903001</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2261-236X
ispartof MATEC web of conferences, 2020, Vol.319, p.3001
issn 2261-236X
2274-7214
2261-236X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f7ab40eb853a4bf4b6c24534b677dce5
source Publicly Available Content Database
subjects Adaptation
Algorithms
Domains
Fault diagnosis
Intelligent manufacturing systems
Machine learning
Representations
Working conditions
title Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20Adaptation%20for%20Intelligent%20Fault%20Diagnosis%20under%20Different%20Working%20Conditions&rft.jtitle=MATEC%20web%20of%20conferences&rft.au=Li,%20Weigui&rft.date=2020&rft.volume=319&rft.spage=3001&rft.pages=3001-&rft.issn=2261-236X&rft.eissn=2261-236X&rft_id=info:doi/10.1051/matecconf/202031903001&rft_dat=%3Cproquest_doaj_%3E2442615646%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-5feb17e770e5f34dd80c0cbb3a8d1421d7f0e9cd8f747b7048a39c1c097b50ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442615646&rft_id=info:pmid/&rfr_iscdi=true