Loading…
An Artificial Neural Network Based on Oxide Synaptic Transistor for Accurate and Robust Image Recognition
Synaptic transistors with low-temperature, solution-processed dielectric films have demonstrated programmable conductance, and therefore potential applications in hardware artificial neural networks for recognizing noisy images. Here, we engineered AlO /InO synaptic transistors via a solution proces...
Saved in:
Published in: | Micromachines (Basel) 2024-04, Vol.15 (4), p.433 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-71a310398528c83e02914d13ee3b2187214208eb7d5cd4022b91d20a63e8dbd3 |
container_end_page | |
container_issue | 4 |
container_start_page | 433 |
container_title | Micromachines (Basel) |
container_volume | 15 |
creator | Su, Dongyue Liang, Xiaoci Geng, Di Wu, Qian Liu, Baiquan Liu, Chuan |
description | Synaptic transistors with low-temperature, solution-processed dielectric films have demonstrated programmable conductance, and therefore potential applications in hardware artificial neural networks for recognizing noisy images. Here, we engineered AlO
/InO
synaptic transistors via a solution process to instantiate neural networks. The transistors show long-term potentiation under appropriate gate voltage pulses. The artificial neural network, consisting of one input layer and one output layer, was constructed using 9 × 3 synaptic transistors. By programming the calculated weight, the hardware network can recognize 3 × 3 pixel images of characters z, v and n with a high accuracy of 85%, even with 40% noise. This work demonstrates that metal-oxide transistors, which exhibit significant long-term potentiation of conductance, can be used for the accurate recognition of noisy images. |
doi_str_mv | 10.3390/mi15040433 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f7b01870d16b49ecafd725b831ec464d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793554938</galeid><doaj_id>oai_doaj_org_article_f7b01870d16b49ecafd725b831ec464d</doaj_id><sourcerecordid>A793554938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-71a310398528c83e02914d13ee3b2187214208eb7d5cd4022b91d20a63e8dbd3</originalsourceid><addsrcrecordid>eNpdUV1rFDEUDaLYsvbFHyABX0TYms9J8jgWPxaKhboPvg2Z5M6SdSZZkxm0_95st1YxIbnhcs7JPRyEXlJyybkh76ZAJRFEcP4EnTOi2Lppmm9P_3mfoYtS9qQupUy9nqMzrhslmZDnKLQRt3kOQ3DBjvgLLPm-zD9T_o7f2wIep4hvfgUP-OtdtIc5OLzNNpZQ5pTxUE_rXKXNgG30-Db1S5nxZrI7wLfg0i6GOaT4Aj0b7Fjg4qGu0Pbjh-3V5_X1zafNVXu9doLKea2o5ZRwoyXTTnMgzFDhKQfgPaNaMSoY0dArL50XhLHeUM-IbTho33u-QpuTrE923x1ymGy-65IN3X0j5V1nq183QjeonlRF4mnTCwPODl4x2WtOwYlGHLXenLQOOf1YoMzdFIqDcbQR0lI6ToQyktE67wq9_g-6T0uO1egR1ZhGa80q6vKE2tn6f4hDmrN1dXuYgksRhlD7rTJcSmG4roS3J4LLqZQMw6MjSrpj_t3f_Cv41cMMSz-Bf4T-SZv_BpbiqA0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046968882</pqid></control><display><type>article</type><title>An Artificial Neural Network Based on Oxide Synaptic Transistor for Accurate and Robust Image Recognition</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Su, Dongyue ; Liang, Xiaoci ; Geng, Di ; Wu, Qian ; Liu, Baiquan ; Liu, Chuan</creator><creatorcontrib>Su, Dongyue ; Liang, Xiaoci ; Geng, Di ; Wu, Qian ; Liu, Baiquan ; Liu, Chuan</creatorcontrib><description>Synaptic transistors with low-temperature, solution-processed dielectric films have demonstrated programmable conductance, and therefore potential applications in hardware artificial neural networks for recognizing noisy images. Here, we engineered AlO
/InO
synaptic transistors via a solution process to instantiate neural networks. The transistors show long-term potentiation under appropriate gate voltage pulses. The artificial neural network, consisting of one input layer and one output layer, was constructed using 9 × 3 synaptic transistors. By programming the calculated weight, the hardware network can recognize 3 × 3 pixel images of characters z, v and n with a high accuracy of 85%, even with 40% noise. This work demonstrates that metal-oxide transistors, which exhibit significant long-term potentiation of conductance, can be used for the accurate recognition of noisy images.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi15040433</identifier><identifier>PMID: 38675245</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aluminum ; artificial neural network ; Artificial neural networks ; Bias ; Electrolytes ; Hardware ; Hydrogen ; image recognition ; Low temperature ; Machine vision ; Metal oxides ; Neural networks ; Silicon wafers ; synaptic transistors ; Temperature ; Thin films ; Transistors ; Voltage pulses</subject><ispartof>Micromachines (Basel), 2024-04, Vol.15 (4), p.433</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c415t-71a310398528c83e02914d13ee3b2187214208eb7d5cd4022b91d20a63e8dbd3</cites><orcidid>0000-0001-9375-7683 ; 0000-0002-0695-592X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3046968882/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3046968882?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38675245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Dongyue</creatorcontrib><creatorcontrib>Liang, Xiaoci</creatorcontrib><creatorcontrib>Geng, Di</creatorcontrib><creatorcontrib>Wu, Qian</creatorcontrib><creatorcontrib>Liu, Baiquan</creatorcontrib><creatorcontrib>Liu, Chuan</creatorcontrib><title>An Artificial Neural Network Based on Oxide Synaptic Transistor for Accurate and Robust Image Recognition</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>Synaptic transistors with low-temperature, solution-processed dielectric films have demonstrated programmable conductance, and therefore potential applications in hardware artificial neural networks for recognizing noisy images. Here, we engineered AlO
/InO
synaptic transistors via a solution process to instantiate neural networks. The transistors show long-term potentiation under appropriate gate voltage pulses. The artificial neural network, consisting of one input layer and one output layer, was constructed using 9 × 3 synaptic transistors. By programming the calculated weight, the hardware network can recognize 3 × 3 pixel images of characters z, v and n with a high accuracy of 85%, even with 40% noise. This work demonstrates that metal-oxide transistors, which exhibit significant long-term potentiation of conductance, can be used for the accurate recognition of noisy images.</description><subject>Aluminum</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Bias</subject><subject>Electrolytes</subject><subject>Hardware</subject><subject>Hydrogen</subject><subject>image recognition</subject><subject>Low temperature</subject><subject>Machine vision</subject><subject>Metal oxides</subject><subject>Neural networks</subject><subject>Silicon wafers</subject><subject>synaptic transistors</subject><subject>Temperature</subject><subject>Thin films</subject><subject>Transistors</subject><subject>Voltage pulses</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUV1rFDEUDaLYsvbFHyABX0TYms9J8jgWPxaKhboPvg2Z5M6SdSZZkxm0_95st1YxIbnhcs7JPRyEXlJyybkh76ZAJRFEcP4EnTOi2Lppmm9P_3mfoYtS9qQupUy9nqMzrhslmZDnKLQRt3kOQ3DBjvgLLPm-zD9T_o7f2wIep4hvfgUP-OtdtIc5OLzNNpZQ5pTxUE_rXKXNgG30-Db1S5nxZrI7wLfg0i6GOaT4Aj0b7Fjg4qGu0Pbjh-3V5_X1zafNVXu9doLKea2o5ZRwoyXTTnMgzFDhKQfgPaNaMSoY0dArL50XhLHeUM-IbTho33u-QpuTrE923x1ymGy-65IN3X0j5V1nq183QjeonlRF4mnTCwPODl4x2WtOwYlGHLXenLQOOf1YoMzdFIqDcbQR0lI6ToQyktE67wq9_g-6T0uO1egR1ZhGa80q6vKE2tn6f4hDmrN1dXuYgksRhlD7rTJcSmG4roS3J4LLqZQMw6MjSrpj_t3f_Cv41cMMSz-Bf4T-SZv_BpbiqA0</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Su, Dongyue</creator><creator>Liang, Xiaoci</creator><creator>Geng, Di</creator><creator>Wu, Qian</creator><creator>Liu, Baiquan</creator><creator>Liu, Chuan</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9375-7683</orcidid><orcidid>https://orcid.org/0000-0002-0695-592X</orcidid></search><sort><creationdate>20240401</creationdate><title>An Artificial Neural Network Based on Oxide Synaptic Transistor for Accurate and Robust Image Recognition</title><author>Su, Dongyue ; Liang, Xiaoci ; Geng, Di ; Wu, Qian ; Liu, Baiquan ; Liu, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-71a310398528c83e02914d13ee3b2187214208eb7d5cd4022b91d20a63e8dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Bias</topic><topic>Electrolytes</topic><topic>Hardware</topic><topic>Hydrogen</topic><topic>image recognition</topic><topic>Low temperature</topic><topic>Machine vision</topic><topic>Metal oxides</topic><topic>Neural networks</topic><topic>Silicon wafers</topic><topic>synaptic transistors</topic><topic>Temperature</topic><topic>Thin films</topic><topic>Transistors</topic><topic>Voltage pulses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Dongyue</creatorcontrib><creatorcontrib>Liang, Xiaoci</creatorcontrib><creatorcontrib>Geng, Di</creatorcontrib><creatorcontrib>Wu, Qian</creatorcontrib><creatorcontrib>Liu, Baiquan</creatorcontrib><creatorcontrib>Liu, Chuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Dongyue</au><au>Liang, Xiaoci</au><au>Geng, Di</au><au>Wu, Qian</au><au>Liu, Baiquan</au><au>Liu, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Artificial Neural Network Based on Oxide Synaptic Transistor for Accurate and Robust Image Recognition</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>433</spage><pages>433-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>Synaptic transistors with low-temperature, solution-processed dielectric films have demonstrated programmable conductance, and therefore potential applications in hardware artificial neural networks for recognizing noisy images. Here, we engineered AlO
/InO
synaptic transistors via a solution process to instantiate neural networks. The transistors show long-term potentiation under appropriate gate voltage pulses. The artificial neural network, consisting of one input layer and one output layer, was constructed using 9 × 3 synaptic transistors. By programming the calculated weight, the hardware network can recognize 3 × 3 pixel images of characters z, v and n with a high accuracy of 85%, even with 40% noise. This work demonstrates that metal-oxide transistors, which exhibit significant long-term potentiation of conductance, can be used for the accurate recognition of noisy images.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38675245</pmid><doi>10.3390/mi15040433</doi><orcidid>https://orcid.org/0000-0001-9375-7683</orcidid><orcidid>https://orcid.org/0000-0002-0695-592X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-666X |
ispartof | Micromachines (Basel), 2024-04, Vol.15 (4), p.433 |
issn | 2072-666X 2072-666X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f7b01870d16b49ecafd725b831ec464d |
source | Publicly Available Content Database; PubMed Central |
subjects | Aluminum artificial neural network Artificial neural networks Bias Electrolytes Hardware Hydrogen image recognition Low temperature Machine vision Metal oxides Neural networks Silicon wafers synaptic transistors Temperature Thin films Transistors Voltage pulses |
title | An Artificial Neural Network Based on Oxide Synaptic Transistor for Accurate and Robust Image Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Artificial%20Neural%20Network%20Based%20on%20Oxide%20Synaptic%20Transistor%20for%20Accurate%20and%20Robust%20Image%20Recognition&rft.jtitle=Micromachines%20(Basel)&rft.au=Su,%20Dongyue&rft.date=2024-04-01&rft.volume=15&rft.issue=4&rft.spage=433&rft.pages=433-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi15040433&rft_dat=%3Cgale_doaj_%3EA793554938%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-71a310398528c83e02914d13ee3b2187214208eb7d5cd4022b91d20a63e8dbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046968882&rft_id=info:pmid/38675245&rft_galeid=A793554938&rfr_iscdi=true |