Loading…

An Artificial Neural Network Based on Oxide Synaptic Transistor for Accurate and Robust Image Recognition

Synaptic transistors with low-temperature, solution-processed dielectric films have demonstrated programmable conductance, and therefore potential applications in hardware artificial neural networks for recognizing noisy images. Here, we engineered AlO /InO synaptic transistors via a solution proces...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2024-04, Vol.15 (4), p.433
Main Authors: Su, Dongyue, Liang, Xiaoci, Geng, Di, Wu, Qian, Liu, Baiquan, Liu, Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c415t-71a310398528c83e02914d13ee3b2187214208eb7d5cd4022b91d20a63e8dbd3
container_end_page
container_issue 4
container_start_page 433
container_title Micromachines (Basel)
container_volume 15
creator Su, Dongyue
Liang, Xiaoci
Geng, Di
Wu, Qian
Liu, Baiquan
Liu, Chuan
description Synaptic transistors with low-temperature, solution-processed dielectric films have demonstrated programmable conductance, and therefore potential applications in hardware artificial neural networks for recognizing noisy images. Here, we engineered AlO /InO synaptic transistors via a solution process to instantiate neural networks. The transistors show long-term potentiation under appropriate gate voltage pulses. The artificial neural network, consisting of one input layer and one output layer, was constructed using 9 × 3 synaptic transistors. By programming the calculated weight, the hardware network can recognize 3 × 3 pixel images of characters z, v and n with a high accuracy of 85%, even with 40% noise. This work demonstrates that metal-oxide transistors, which exhibit significant long-term potentiation of conductance, can be used for the accurate recognition of noisy images.
doi_str_mv 10.3390/mi15040433
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f7b01870d16b49ecafd725b831ec464d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793554938</galeid><doaj_id>oai_doaj_org_article_f7b01870d16b49ecafd725b831ec464d</doaj_id><sourcerecordid>A793554938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-71a310398528c83e02914d13ee3b2187214208eb7d5cd4022b91d20a63e8dbd3</originalsourceid><addsrcrecordid>eNpdUV1rFDEUDaLYsvbFHyABX0TYms9J8jgWPxaKhboPvg2Z5M6SdSZZkxm0_95st1YxIbnhcs7JPRyEXlJyybkh76ZAJRFEcP4EnTOi2Lppmm9P_3mfoYtS9qQupUy9nqMzrhslmZDnKLQRt3kOQ3DBjvgLLPm-zD9T_o7f2wIep4hvfgUP-OtdtIc5OLzNNpZQ5pTxUE_rXKXNgG30-Db1S5nxZrI7wLfg0i6GOaT4Aj0b7Fjg4qGu0Pbjh-3V5_X1zafNVXu9doLKea2o5ZRwoyXTTnMgzFDhKQfgPaNaMSoY0dArL50XhLHeUM-IbTho33u-QpuTrE923x1ymGy-65IN3X0j5V1nq183QjeonlRF4mnTCwPODl4x2WtOwYlGHLXenLQOOf1YoMzdFIqDcbQR0lI6ToQyktE67wq9_g-6T0uO1egR1ZhGa80q6vKE2tn6f4hDmrN1dXuYgksRhlD7rTJcSmG4roS3J4LLqZQMw6MjSrpj_t3f_Cv41cMMSz-Bf4T-SZv_BpbiqA0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046968882</pqid></control><display><type>article</type><title>An Artificial Neural Network Based on Oxide Synaptic Transistor for Accurate and Robust Image Recognition</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Su, Dongyue ; Liang, Xiaoci ; Geng, Di ; Wu, Qian ; Liu, Baiquan ; Liu, Chuan</creator><creatorcontrib>Su, Dongyue ; Liang, Xiaoci ; Geng, Di ; Wu, Qian ; Liu, Baiquan ; Liu, Chuan</creatorcontrib><description>Synaptic transistors with low-temperature, solution-processed dielectric films have demonstrated programmable conductance, and therefore potential applications in hardware artificial neural networks for recognizing noisy images. Here, we engineered AlO /InO synaptic transistors via a solution process to instantiate neural networks. The transistors show long-term potentiation under appropriate gate voltage pulses. The artificial neural network, consisting of one input layer and one output layer, was constructed using 9 × 3 synaptic transistors. By programming the calculated weight, the hardware network can recognize 3 × 3 pixel images of characters z, v and n with a high accuracy of 85%, even with 40% noise. This work demonstrates that metal-oxide transistors, which exhibit significant long-term potentiation of conductance, can be used for the accurate recognition of noisy images.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi15040433</identifier><identifier>PMID: 38675245</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aluminum ; artificial neural network ; Artificial neural networks ; Bias ; Electrolytes ; Hardware ; Hydrogen ; image recognition ; Low temperature ; Machine vision ; Metal oxides ; Neural networks ; Silicon wafers ; synaptic transistors ; Temperature ; Thin films ; Transistors ; Voltage pulses</subject><ispartof>Micromachines (Basel), 2024-04, Vol.15 (4), p.433</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c415t-71a310398528c83e02914d13ee3b2187214208eb7d5cd4022b91d20a63e8dbd3</cites><orcidid>0000-0001-9375-7683 ; 0000-0002-0695-592X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3046968882/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3046968882?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38675245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Dongyue</creatorcontrib><creatorcontrib>Liang, Xiaoci</creatorcontrib><creatorcontrib>Geng, Di</creatorcontrib><creatorcontrib>Wu, Qian</creatorcontrib><creatorcontrib>Liu, Baiquan</creatorcontrib><creatorcontrib>Liu, Chuan</creatorcontrib><title>An Artificial Neural Network Based on Oxide Synaptic Transistor for Accurate and Robust Image Recognition</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>Synaptic transistors with low-temperature, solution-processed dielectric films have demonstrated programmable conductance, and therefore potential applications in hardware artificial neural networks for recognizing noisy images. Here, we engineered AlO /InO synaptic transistors via a solution process to instantiate neural networks. The transistors show long-term potentiation under appropriate gate voltage pulses. The artificial neural network, consisting of one input layer and one output layer, was constructed using 9 × 3 synaptic transistors. By programming the calculated weight, the hardware network can recognize 3 × 3 pixel images of characters z, v and n with a high accuracy of 85%, even with 40% noise. This work demonstrates that metal-oxide transistors, which exhibit significant long-term potentiation of conductance, can be used for the accurate recognition of noisy images.</description><subject>Aluminum</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Bias</subject><subject>Electrolytes</subject><subject>Hardware</subject><subject>Hydrogen</subject><subject>image recognition</subject><subject>Low temperature</subject><subject>Machine vision</subject><subject>Metal oxides</subject><subject>Neural networks</subject><subject>Silicon wafers</subject><subject>synaptic transistors</subject><subject>Temperature</subject><subject>Thin films</subject><subject>Transistors</subject><subject>Voltage pulses</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUV1rFDEUDaLYsvbFHyABX0TYms9J8jgWPxaKhboPvg2Z5M6SdSZZkxm0_95st1YxIbnhcs7JPRyEXlJyybkh76ZAJRFEcP4EnTOi2Lppmm9P_3mfoYtS9qQupUy9nqMzrhslmZDnKLQRt3kOQ3DBjvgLLPm-zD9T_o7f2wIep4hvfgUP-OtdtIc5OLzNNpZQ5pTxUE_rXKXNgG30-Db1S5nxZrI7wLfg0i6GOaT4Aj0b7Fjg4qGu0Pbjh-3V5_X1zafNVXu9doLKea2o5ZRwoyXTTnMgzFDhKQfgPaNaMSoY0dArL50XhLHeUM-IbTho33u-QpuTrE923x1ymGy-65IN3X0j5V1nq183QjeonlRF4mnTCwPODl4x2WtOwYlGHLXenLQOOf1YoMzdFIqDcbQR0lI6ToQyktE67wq9_g-6T0uO1egR1ZhGa80q6vKE2tn6f4hDmrN1dXuYgksRhlD7rTJcSmG4roS3J4LLqZQMw6MjSrpj_t3f_Cv41cMMSz-Bf4T-SZv_BpbiqA0</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Su, Dongyue</creator><creator>Liang, Xiaoci</creator><creator>Geng, Di</creator><creator>Wu, Qian</creator><creator>Liu, Baiquan</creator><creator>Liu, Chuan</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9375-7683</orcidid><orcidid>https://orcid.org/0000-0002-0695-592X</orcidid></search><sort><creationdate>20240401</creationdate><title>An Artificial Neural Network Based on Oxide Synaptic Transistor for Accurate and Robust Image Recognition</title><author>Su, Dongyue ; Liang, Xiaoci ; Geng, Di ; Wu, Qian ; Liu, Baiquan ; Liu, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-71a310398528c83e02914d13ee3b2187214208eb7d5cd4022b91d20a63e8dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Bias</topic><topic>Electrolytes</topic><topic>Hardware</topic><topic>Hydrogen</topic><topic>image recognition</topic><topic>Low temperature</topic><topic>Machine vision</topic><topic>Metal oxides</topic><topic>Neural networks</topic><topic>Silicon wafers</topic><topic>synaptic transistors</topic><topic>Temperature</topic><topic>Thin films</topic><topic>Transistors</topic><topic>Voltage pulses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Dongyue</creatorcontrib><creatorcontrib>Liang, Xiaoci</creatorcontrib><creatorcontrib>Geng, Di</creatorcontrib><creatorcontrib>Wu, Qian</creatorcontrib><creatorcontrib>Liu, Baiquan</creatorcontrib><creatorcontrib>Liu, Chuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Dongyue</au><au>Liang, Xiaoci</au><au>Geng, Di</au><au>Wu, Qian</au><au>Liu, Baiquan</au><au>Liu, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Artificial Neural Network Based on Oxide Synaptic Transistor for Accurate and Robust Image Recognition</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>433</spage><pages>433-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>Synaptic transistors with low-temperature, solution-processed dielectric films have demonstrated programmable conductance, and therefore potential applications in hardware artificial neural networks for recognizing noisy images. Here, we engineered AlO /InO synaptic transistors via a solution process to instantiate neural networks. The transistors show long-term potentiation under appropriate gate voltage pulses. The artificial neural network, consisting of one input layer and one output layer, was constructed using 9 × 3 synaptic transistors. By programming the calculated weight, the hardware network can recognize 3 × 3 pixel images of characters z, v and n with a high accuracy of 85%, even with 40% noise. This work demonstrates that metal-oxide transistors, which exhibit significant long-term potentiation of conductance, can be used for the accurate recognition of noisy images.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38675245</pmid><doi>10.3390/mi15040433</doi><orcidid>https://orcid.org/0000-0001-9375-7683</orcidid><orcidid>https://orcid.org/0000-0002-0695-592X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2024-04, Vol.15 (4), p.433
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f7b01870d16b49ecafd725b831ec464d
source Publicly Available Content Database; PubMed Central
subjects Aluminum
artificial neural network
Artificial neural networks
Bias
Electrolytes
Hardware
Hydrogen
image recognition
Low temperature
Machine vision
Metal oxides
Neural networks
Silicon wafers
synaptic transistors
Temperature
Thin films
Transistors
Voltage pulses
title An Artificial Neural Network Based on Oxide Synaptic Transistor for Accurate and Robust Image Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Artificial%20Neural%20Network%20Based%20on%20Oxide%20Synaptic%20Transistor%20for%20Accurate%20and%20Robust%20Image%20Recognition&rft.jtitle=Micromachines%20(Basel)&rft.au=Su,%20Dongyue&rft.date=2024-04-01&rft.volume=15&rft.issue=4&rft.spage=433&rft.pages=433-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi15040433&rft_dat=%3Cgale_doaj_%3EA793554938%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-71a310398528c83e02914d13ee3b2187214208eb7d5cd4022b91d20a63e8dbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046968882&rft_id=info:pmid/38675245&rft_galeid=A793554938&rfr_iscdi=true