Loading…
MsIFT: Multi-Source Image Fusion Transformer
Multi-source image fusion is very important for improving image representation ability since its essence relies on the complementarity between multi-source information. However, feature-level image fusion methods based on the convolution neural network are impacted by the spatial misalignment betwee...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-08, Vol.14 (16), p.4062 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multi-source image fusion is very important for improving image representation ability since its essence relies on the complementarity between multi-source information. However, feature-level image fusion methods based on the convolution neural network are impacted by the spatial misalignment between image pairs, which leads to the semantic bias in merging features and destroys the representation ability of the region-of-interests. In this paper, a novel multi-source image fusion transformer (MsIFT) is proposed. Due to the inherent global attention mechanism of the transformer, the MsIFT has non-local fusion receptive fields, and it is more robust to spatial misalignment. Furthermore, multiple classification-based downstream tasks (e.g., pixel-wise classification, image-wise classification and semantic segmentation) are unified in the proposed MsIFT framework, and the fusion module architecture is shared by different tasks. The MsIFT achieved state-of-the-art performances on the image-wise classification dataset VAIS, semantic segmentation dataset SpaceNet 6 and pixel-wise classification dataset GRSS-DFC-2013. The code and trained model are being released upon the publication of the work. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14164062 |