Loading…

Quasi‐3D magnetic field simulation of superconducting devices with translational symmetry

This work presents a quasi‐three‐dimensional (Q3D) approach for the magnetic field simulation in superconducting devices. First‐order two‐dimensional finite‐element edge functions in the model's cross‐section are combined with one‐dimensional orthogonal polynomials along the longitudinal direct...

Full description

Saved in:
Bibliographic Details
Published in:IET science, measurement & technology measurement & technology, 2021-05, Vol.15 (3), p.319-327
Main Authors: D'Angelo, Laura A. M., De Gersem, Herbert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work presents a quasi‐three‐dimensional (Q3D) approach for the magnetic field simulation in superconducting devices. First‐order two‐dimensional finite‐element edge functions in the model's cross‐section are combined with one‐dimensional orthogonal polynomials along the longitudinal direction. The interfilament coupling currents arising in superconducting multi‐filament materials are modelled by taking the associated magnetization into account. For this formulation, the Q3D ansatz is elaborated, verificated and applied to a superconducting cable model. In the end, the approach is compared to a conventional three‐dimensional finite‐element method against which the proposed Q3D method demonstrates a superior computational efficiency.
ISSN:1751-8822
1751-8830
DOI:10.1049/smt2.12033