Loading…
Modeling and Optimization of Laser Cladding Fixation Process for Optical Fiber Sensors in Harsh Environments
In order to overcome the shortcomings of the poor shear resistance of the bare optical fiber whose coating layer falls off due to harsh conditions, such as on aero-engines and the marine environment, the coaxial powder feeding laser cladding method (CPFLCM) is proposed to connect the optical fiber s...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-03, Vol.22 (7), p.2569 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to overcome the shortcomings of the poor shear resistance of the bare optical fiber whose coating layer falls off due to harsh conditions, such as on aero-engines and the marine environment, the coaxial powder feeding laser cladding method (CPFLCM) is proposed to connect the optical fiber sensor and the substrate. The concentration field model of the powder flow is established in sections, the effective number model of particles and the corresponding laser attenuation rate are obtained. Through simulation, the influence of relevant parameters of laser cladding on the temperature field was analyzed, and the accurate parameters of laser cladding were optimized. Finally, the temperature rise trajectory of the substrate temperature field was verified by using the fiber grating temperature sensor. Through experiments, the quality of the molten pool and the optical transmission loss of the optical fiber sensor were analyzed, and the consistency of the simulation optimization parameters was verified. Through this paper, it can be concluded that the proposed CPFLCM can realize the effective connection of the optical fiber sensor to the substrate. It is of great significance in the application of optical fiber sensors in harsh environments of oceans and aerospace. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22072569 |