Loading…

The Simulation-Based Approach for Random Speckle Pattern Representation in Synthetically Generated Video Sequences of Dynamic Phenomena

Structural health monitoring systems that employ vision data are under constant development. Generating synthetic vision data is an actual issue. It allows, for example, for obtention of additional data for machine learning techniques or predicting the result of observations using a vision system wi...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-12, Vol.22 (23), p.9489
Main Authors: Zdziebko, Paweł, Dworakowski, Ziemowit, Holak, Krzysztof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c468t-4644bc487d203271d638501dd220e604c5d157f459d4baca543f11b86abdc0553
container_end_page
container_issue 23
container_start_page 9489
container_title Sensors (Basel, Switzerland)
container_volume 22
creator Zdziebko, Paweł
Dworakowski, Ziemowit
Holak, Krzysztof
description Structural health monitoring systems that employ vision data are under constant development. Generating synthetic vision data is an actual issue. It allows, for example, for obtention of additional data for machine learning techniques or predicting the result of observations using a vision system with a reduced number of experiments. A random speckle pattern (RSP) fixed on the surface of the observed structure is usually used in measurements. The determination of displacements of its areas using digital image correlation (DIC) methods allows for extracting the structure's deformation in both static and dynamic cases. An RSP modeling methodology for synthetic image generation is developed within this paper. The proposed approach combines the finite element modeling technique and simulation results with the Blender graphics environment to generate video sequences of the mechanical structure with deformable RSP attached to it. The comparative analysis showed high compliance of the displacement between the synthetic images processed with the DIC method and numerical data.
doi_str_mv 10.3390/s22239489
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f7ec1c1f8bd540f5bb47343d09edaeee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746534951</galeid><doaj_id>oai_doaj_org_article_f7ec1c1f8bd540f5bb47343d09edaeee</doaj_id><sourcerecordid>A746534951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-4644bc487d203271d638501dd220e604c5d157f459d4baca543f11b86abdc0553</originalsourceid><addsrcrecordid>eNpdUstuEzEUtRCItoEFP4AssYFFip_z2CCFAqVSJaqmsLU89nXiMGMP9gQpX9DfxjQlapEXtq7PPb7n-CD0ipJTzlvyPjPGeCua9gk6poKJecMYefrgfIROct4QwjjnzXN0xCtJGG3JMbq9WQNe-mHb68nHMP-oM1i8GMcUtVljFxO-1sHGAS9HMD97wFd6miAFfA1jggxhumvEPuDlLkxrmLzRfb_D5xAg6amw_fAWIl7Cry0EAxlHhz_tgh68wVdrCHGAoF-gZ073GV7e7zP0_cvnm7Ov88tv5xdni8u5EVUzzUUlRGdEU1tGOKuprXgjCbW2iISKCCMtlbUTsrWi00ZLwR2lXVPpzhoiJZ-hiz2vjXqjxuQHnXYqaq_uCjGtlE5FQg_K1WCooa7prBTEya4TNRfckhasBoDC9WHPNW67AawpXiTdPyJ9fBP8Wq3ib9XW5beqthC8vSdIsZiTJzX4bKDvdYC4zYrVknPKRNE6Q2_-g27iNoViVUGJRlakLtPN0OketdJFgA8ulndNWRaK2zGA86W-qEUluWglLQ3v9g0mxZwTuMP0lKi_2VKHbBXs64dyD8h_YeJ_AKVPytU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748560747</pqid></control><display><type>article</type><title>The Simulation-Based Approach for Random Speckle Pattern Representation in Synthetically Generated Video Sequences of Dynamic Phenomena</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zdziebko, Paweł ; Dworakowski, Ziemowit ; Holak, Krzysztof</creator><creatorcontrib>Zdziebko, Paweł ; Dworakowski, Ziemowit ; Holak, Krzysztof</creatorcontrib><description>Structural health monitoring systems that employ vision data are under constant development. Generating synthetic vision data is an actual issue. It allows, for example, for obtention of additional data for machine learning techniques or predicting the result of observations using a vision system with a reduced number of experiments. A random speckle pattern (RSP) fixed on the surface of the observed structure is usually used in measurements. The determination of displacements of its areas using digital image correlation (DIC) methods allows for extracting the structure's deformation in both static and dynamic cases. An RSP modeling methodology for synthetic image generation is developed within this paper. The proposed approach combines the finite element modeling technique and simulation results with the Blender graphics environment to generate video sequences of the mechanical structure with deformable RSP attached to it. The comparative analysis showed high compliance of the displacement between the synthetic images processed with the DIC method and numerical data.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22239489</identifier><identifier>PMID: 36502190</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Blender ; Cameras ; Computer graphics ; Computer Simulation ; Deformation ; Digital imaging ; Enhanced vision ; Equipment and supplies ; finite element analysis ; Image processing ; Lighting ; Machine learning ; Neural networks ; Physics ; random speckle patterns ; rendering ; Simulation ; Simulation methods ; Software ; Speckle patterns ; Structural health monitoring ; Vision systems</subject><ispartof>Sensors (Basel, Switzerland), 2022-12, Vol.22 (23), p.9489</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c468t-4644bc487d203271d638501dd220e604c5d157f459d4baca543f11b86abdc0553</cites><orcidid>0000-0001-6845-033X ; 0000-0002-5289-9826 ; 0000-0002-7107-8126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2748560747/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2748560747?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36502190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zdziebko, Paweł</creatorcontrib><creatorcontrib>Dworakowski, Ziemowit</creatorcontrib><creatorcontrib>Holak, Krzysztof</creatorcontrib><title>The Simulation-Based Approach for Random Speckle Pattern Representation in Synthetically Generated Video Sequences of Dynamic Phenomena</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Structural health monitoring systems that employ vision data are under constant development. Generating synthetic vision data is an actual issue. It allows, for example, for obtention of additional data for machine learning techniques or predicting the result of observations using a vision system with a reduced number of experiments. A random speckle pattern (RSP) fixed on the surface of the observed structure is usually used in measurements. The determination of displacements of its areas using digital image correlation (DIC) methods allows for extracting the structure's deformation in both static and dynamic cases. An RSP modeling methodology for synthetic image generation is developed within this paper. The proposed approach combines the finite element modeling technique and simulation results with the Blender graphics environment to generate video sequences of the mechanical structure with deformable RSP attached to it. The comparative analysis showed high compliance of the displacement between the synthetic images processed with the DIC method and numerical data.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Blender</subject><subject>Cameras</subject><subject>Computer graphics</subject><subject>Computer Simulation</subject><subject>Deformation</subject><subject>Digital imaging</subject><subject>Enhanced vision</subject><subject>Equipment and supplies</subject><subject>finite element analysis</subject><subject>Image processing</subject><subject>Lighting</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Physics</subject><subject>random speckle patterns</subject><subject>rendering</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Software</subject><subject>Speckle patterns</subject><subject>Structural health monitoring</subject><subject>Vision systems</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUstuEzEUtRCItoEFP4AssYFFip_z2CCFAqVSJaqmsLU89nXiMGMP9gQpX9DfxjQlapEXtq7PPb7n-CD0ipJTzlvyPjPGeCua9gk6poKJecMYefrgfIROct4QwjjnzXN0xCtJGG3JMbq9WQNe-mHb68nHMP-oM1i8GMcUtVljFxO-1sHGAS9HMD97wFd6miAFfA1jggxhumvEPuDlLkxrmLzRfb_D5xAg6amw_fAWIl7Cry0EAxlHhz_tgh68wVdrCHGAoF-gZ073GV7e7zP0_cvnm7Ov88tv5xdni8u5EVUzzUUlRGdEU1tGOKuprXgjCbW2iISKCCMtlbUTsrWi00ZLwR2lXVPpzhoiJZ-hiz2vjXqjxuQHnXYqaq_uCjGtlE5FQg_K1WCooa7prBTEya4TNRfckhasBoDC9WHPNW67AawpXiTdPyJ9fBP8Wq3ib9XW5beqthC8vSdIsZiTJzX4bKDvdYC4zYrVknPKRNE6Q2_-g27iNoViVUGJRlakLtPN0OketdJFgA8ulndNWRaK2zGA86W-qEUluWglLQ3v9g0mxZwTuMP0lKi_2VKHbBXs64dyD8h_YeJ_AKVPytU</recordid><startdate>20221205</startdate><enddate>20221205</enddate><creator>Zdziebko, Paweł</creator><creator>Dworakowski, Ziemowit</creator><creator>Holak, Krzysztof</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6845-033X</orcidid><orcidid>https://orcid.org/0000-0002-5289-9826</orcidid><orcidid>https://orcid.org/0000-0002-7107-8126</orcidid></search><sort><creationdate>20221205</creationdate><title>The Simulation-Based Approach for Random Speckle Pattern Representation in Synthetically Generated Video Sequences of Dynamic Phenomena</title><author>Zdziebko, Paweł ; Dworakowski, Ziemowit ; Holak, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-4644bc487d203271d638501dd220e604c5d157f459d4baca543f11b86abdc0553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Blender</topic><topic>Cameras</topic><topic>Computer graphics</topic><topic>Computer Simulation</topic><topic>Deformation</topic><topic>Digital imaging</topic><topic>Enhanced vision</topic><topic>Equipment and supplies</topic><topic>finite element analysis</topic><topic>Image processing</topic><topic>Lighting</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Physics</topic><topic>random speckle patterns</topic><topic>rendering</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Software</topic><topic>Speckle patterns</topic><topic>Structural health monitoring</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zdziebko, Paweł</creatorcontrib><creatorcontrib>Dworakowski, Ziemowit</creatorcontrib><creatorcontrib>Holak, Krzysztof</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zdziebko, Paweł</au><au>Dworakowski, Ziemowit</au><au>Holak, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Simulation-Based Approach for Random Speckle Pattern Representation in Synthetically Generated Video Sequences of Dynamic Phenomena</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-12-05</date><risdate>2022</risdate><volume>22</volume><issue>23</issue><spage>9489</spage><pages>9489-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Structural health monitoring systems that employ vision data are under constant development. Generating synthetic vision data is an actual issue. It allows, for example, for obtention of additional data for machine learning techniques or predicting the result of observations using a vision system with a reduced number of experiments. A random speckle pattern (RSP) fixed on the surface of the observed structure is usually used in measurements. The determination of displacements of its areas using digital image correlation (DIC) methods allows for extracting the structure's deformation in both static and dynamic cases. An RSP modeling methodology for synthetic image generation is developed within this paper. The proposed approach combines the finite element modeling technique and simulation results with the Blender graphics environment to generate video sequences of the mechanical structure with deformable RSP attached to it. The comparative analysis showed high compliance of the displacement between the synthetic images processed with the DIC method and numerical data.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36502190</pmid><doi>10.3390/s22239489</doi><orcidid>https://orcid.org/0000-0001-6845-033X</orcidid><orcidid>https://orcid.org/0000-0002-5289-9826</orcidid><orcidid>https://orcid.org/0000-0002-7107-8126</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2022-12, Vol.22 (23), p.9489
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f7ec1c1f8bd540f5bb47343d09edaeee
source Publicly Available Content Database; PubMed Central
subjects Accuracy
Algorithms
Blender
Cameras
Computer graphics
Computer Simulation
Deformation
Digital imaging
Enhanced vision
Equipment and supplies
finite element analysis
Image processing
Lighting
Machine learning
Neural networks
Physics
random speckle patterns
rendering
Simulation
Simulation methods
Software
Speckle patterns
Structural health monitoring
Vision systems
title The Simulation-Based Approach for Random Speckle Pattern Representation in Synthetically Generated Video Sequences of Dynamic Phenomena
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Simulation-Based%20Approach%20for%20Random%20Speckle%20Pattern%20Representation%20in%20Synthetically%20Generated%20Video%20Sequences%20of%20Dynamic%20Phenomena&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zdziebko,%20Pawe%C5%82&rft.date=2022-12-05&rft.volume=22&rft.issue=23&rft.spage=9489&rft.pages=9489-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22239489&rft_dat=%3Cgale_doaj_%3EA746534951%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-4644bc487d203271d638501dd220e604c5d157f459d4baca543f11b86abdc0553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2748560747&rft_id=info:pmid/36502190&rft_galeid=A746534951&rfr_iscdi=true