Loading…
The Simulation-Based Approach for Random Speckle Pattern Representation in Synthetically Generated Video Sequences of Dynamic Phenomena
Structural health monitoring systems that employ vision data are under constant development. Generating synthetic vision data is an actual issue. It allows, for example, for obtention of additional data for machine learning techniques or predicting the result of observations using a vision system wi...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-12, Vol.22 (23), p.9489 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-4644bc487d203271d638501dd220e604c5d157f459d4baca543f11b86abdc0553 |
container_end_page | |
container_issue | 23 |
container_start_page | 9489 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 22 |
creator | Zdziebko, Paweł Dworakowski, Ziemowit Holak, Krzysztof |
description | Structural health monitoring systems that employ vision data are under constant development. Generating synthetic vision data is an actual issue. It allows, for example, for obtention of additional data for machine learning techniques or predicting the result of observations using a vision system with a reduced number of experiments. A random speckle pattern (RSP) fixed on the surface of the observed structure is usually used in measurements. The determination of displacements of its areas using digital image correlation (DIC) methods allows for extracting the structure's deformation in both static and dynamic cases. An RSP modeling methodology for synthetic image generation is developed within this paper. The proposed approach combines the finite element modeling technique and simulation results with the Blender graphics environment to generate video sequences of the mechanical structure with deformable RSP attached to it. The comparative analysis showed high compliance of the displacement between the synthetic images processed with the DIC method and numerical data. |
doi_str_mv | 10.3390/s22239489 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f7ec1c1f8bd540f5bb47343d09edaeee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746534951</galeid><doaj_id>oai_doaj_org_article_f7ec1c1f8bd540f5bb47343d09edaeee</doaj_id><sourcerecordid>A746534951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-4644bc487d203271d638501dd220e604c5d157f459d4baca543f11b86abdc0553</originalsourceid><addsrcrecordid>eNpdUstuEzEUtRCItoEFP4AssYFFip_z2CCFAqVSJaqmsLU89nXiMGMP9gQpX9DfxjQlapEXtq7PPb7n-CD0ipJTzlvyPjPGeCua9gk6poKJecMYefrgfIROct4QwjjnzXN0xCtJGG3JMbq9WQNe-mHb68nHMP-oM1i8GMcUtVljFxO-1sHGAS9HMD97wFd6miAFfA1jggxhumvEPuDlLkxrmLzRfb_D5xAg6amw_fAWIl7Cry0EAxlHhz_tgh68wVdrCHGAoF-gZ073GV7e7zP0_cvnm7Ov88tv5xdni8u5EVUzzUUlRGdEU1tGOKuprXgjCbW2iISKCCMtlbUTsrWi00ZLwR2lXVPpzhoiJZ-hiz2vjXqjxuQHnXYqaq_uCjGtlE5FQg_K1WCooa7prBTEya4TNRfckhasBoDC9WHPNW67AawpXiTdPyJ9fBP8Wq3ib9XW5beqthC8vSdIsZiTJzX4bKDvdYC4zYrVknPKRNE6Q2_-g27iNoViVUGJRlakLtPN0OketdJFgA8ulndNWRaK2zGA86W-qEUluWglLQ3v9g0mxZwTuMP0lKi_2VKHbBXs64dyD8h_YeJ_AKVPytU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748560747</pqid></control><display><type>article</type><title>The Simulation-Based Approach for Random Speckle Pattern Representation in Synthetically Generated Video Sequences of Dynamic Phenomena</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zdziebko, Paweł ; Dworakowski, Ziemowit ; Holak, Krzysztof</creator><creatorcontrib>Zdziebko, Paweł ; Dworakowski, Ziemowit ; Holak, Krzysztof</creatorcontrib><description>Structural health monitoring systems that employ vision data are under constant development. Generating synthetic vision data is an actual issue. It allows, for example, for obtention of additional data for machine learning techniques or predicting the result of observations using a vision system with a reduced number of experiments. A random speckle pattern (RSP) fixed on the surface of the observed structure is usually used in measurements. The determination of displacements of its areas using digital image correlation (DIC) methods allows for extracting the structure's deformation in both static and dynamic cases. An RSP modeling methodology for synthetic image generation is developed within this paper. The proposed approach combines the finite element modeling technique and simulation results with the Blender graphics environment to generate video sequences of the mechanical structure with deformable RSP attached to it. The comparative analysis showed high compliance of the displacement between the synthetic images processed with the DIC method and numerical data.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22239489</identifier><identifier>PMID: 36502190</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Blender ; Cameras ; Computer graphics ; Computer Simulation ; Deformation ; Digital imaging ; Enhanced vision ; Equipment and supplies ; finite element analysis ; Image processing ; Lighting ; Machine learning ; Neural networks ; Physics ; random speckle patterns ; rendering ; Simulation ; Simulation methods ; Software ; Speckle patterns ; Structural health monitoring ; Vision systems</subject><ispartof>Sensors (Basel, Switzerland), 2022-12, Vol.22 (23), p.9489</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c468t-4644bc487d203271d638501dd220e604c5d157f459d4baca543f11b86abdc0553</cites><orcidid>0000-0001-6845-033X ; 0000-0002-5289-9826 ; 0000-0002-7107-8126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2748560747/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2748560747?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36502190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zdziebko, Paweł</creatorcontrib><creatorcontrib>Dworakowski, Ziemowit</creatorcontrib><creatorcontrib>Holak, Krzysztof</creatorcontrib><title>The Simulation-Based Approach for Random Speckle Pattern Representation in Synthetically Generated Video Sequences of Dynamic Phenomena</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Structural health monitoring systems that employ vision data are under constant development. Generating synthetic vision data is an actual issue. It allows, for example, for obtention of additional data for machine learning techniques or predicting the result of observations using a vision system with a reduced number of experiments. A random speckle pattern (RSP) fixed on the surface of the observed structure is usually used in measurements. The determination of displacements of its areas using digital image correlation (DIC) methods allows for extracting the structure's deformation in both static and dynamic cases. An RSP modeling methodology for synthetic image generation is developed within this paper. The proposed approach combines the finite element modeling technique and simulation results with the Blender graphics environment to generate video sequences of the mechanical structure with deformable RSP attached to it. The comparative analysis showed high compliance of the displacement between the synthetic images processed with the DIC method and numerical data.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Blender</subject><subject>Cameras</subject><subject>Computer graphics</subject><subject>Computer Simulation</subject><subject>Deformation</subject><subject>Digital imaging</subject><subject>Enhanced vision</subject><subject>Equipment and supplies</subject><subject>finite element analysis</subject><subject>Image processing</subject><subject>Lighting</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Physics</subject><subject>random speckle patterns</subject><subject>rendering</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Software</subject><subject>Speckle patterns</subject><subject>Structural health monitoring</subject><subject>Vision systems</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUstuEzEUtRCItoEFP4AssYFFip_z2CCFAqVSJaqmsLU89nXiMGMP9gQpX9DfxjQlapEXtq7PPb7n-CD0ipJTzlvyPjPGeCua9gk6poKJecMYefrgfIROct4QwjjnzXN0xCtJGG3JMbq9WQNe-mHb68nHMP-oM1i8GMcUtVljFxO-1sHGAS9HMD97wFd6miAFfA1jggxhumvEPuDlLkxrmLzRfb_D5xAg6amw_fAWIl7Cry0EAxlHhz_tgh68wVdrCHGAoF-gZ073GV7e7zP0_cvnm7Ov88tv5xdni8u5EVUzzUUlRGdEU1tGOKuprXgjCbW2iISKCCMtlbUTsrWi00ZLwR2lXVPpzhoiJZ-hiz2vjXqjxuQHnXYqaq_uCjGtlE5FQg_K1WCooa7prBTEya4TNRfckhasBoDC9WHPNW67AawpXiTdPyJ9fBP8Wq3ib9XW5beqthC8vSdIsZiTJzX4bKDvdYC4zYrVknPKRNE6Q2_-g27iNoViVUGJRlakLtPN0OketdJFgA8ulndNWRaK2zGA86W-qEUluWglLQ3v9g0mxZwTuMP0lKi_2VKHbBXs64dyD8h_YeJ_AKVPytU</recordid><startdate>20221205</startdate><enddate>20221205</enddate><creator>Zdziebko, Paweł</creator><creator>Dworakowski, Ziemowit</creator><creator>Holak, Krzysztof</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6845-033X</orcidid><orcidid>https://orcid.org/0000-0002-5289-9826</orcidid><orcidid>https://orcid.org/0000-0002-7107-8126</orcidid></search><sort><creationdate>20221205</creationdate><title>The Simulation-Based Approach for Random Speckle Pattern Representation in Synthetically Generated Video Sequences of Dynamic Phenomena</title><author>Zdziebko, Paweł ; Dworakowski, Ziemowit ; Holak, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-4644bc487d203271d638501dd220e604c5d157f459d4baca543f11b86abdc0553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Blender</topic><topic>Cameras</topic><topic>Computer graphics</topic><topic>Computer Simulation</topic><topic>Deformation</topic><topic>Digital imaging</topic><topic>Enhanced vision</topic><topic>Equipment and supplies</topic><topic>finite element analysis</topic><topic>Image processing</topic><topic>Lighting</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Physics</topic><topic>random speckle patterns</topic><topic>rendering</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Software</topic><topic>Speckle patterns</topic><topic>Structural health monitoring</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zdziebko, Paweł</creatorcontrib><creatorcontrib>Dworakowski, Ziemowit</creatorcontrib><creatorcontrib>Holak, Krzysztof</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zdziebko, Paweł</au><au>Dworakowski, Ziemowit</au><au>Holak, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Simulation-Based Approach for Random Speckle Pattern Representation in Synthetically Generated Video Sequences of Dynamic Phenomena</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-12-05</date><risdate>2022</risdate><volume>22</volume><issue>23</issue><spage>9489</spage><pages>9489-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Structural health monitoring systems that employ vision data are under constant development. Generating synthetic vision data is an actual issue. It allows, for example, for obtention of additional data for machine learning techniques or predicting the result of observations using a vision system with a reduced number of experiments. A random speckle pattern (RSP) fixed on the surface of the observed structure is usually used in measurements. The determination of displacements of its areas using digital image correlation (DIC) methods allows for extracting the structure's deformation in both static and dynamic cases. An RSP modeling methodology for synthetic image generation is developed within this paper. The proposed approach combines the finite element modeling technique and simulation results with the Blender graphics environment to generate video sequences of the mechanical structure with deformable RSP attached to it. The comparative analysis showed high compliance of the displacement between the synthetic images processed with the DIC method and numerical data.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36502190</pmid><doi>10.3390/s22239489</doi><orcidid>https://orcid.org/0000-0001-6845-033X</orcidid><orcidid>https://orcid.org/0000-0002-5289-9826</orcidid><orcidid>https://orcid.org/0000-0002-7107-8126</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2022-12, Vol.22 (23), p.9489 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f7ec1c1f8bd540f5bb47343d09edaeee |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Algorithms Blender Cameras Computer graphics Computer Simulation Deformation Digital imaging Enhanced vision Equipment and supplies finite element analysis Image processing Lighting Machine learning Neural networks Physics random speckle patterns rendering Simulation Simulation methods Software Speckle patterns Structural health monitoring Vision systems |
title | The Simulation-Based Approach for Random Speckle Pattern Representation in Synthetically Generated Video Sequences of Dynamic Phenomena |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Simulation-Based%20Approach%20for%20Random%20Speckle%20Pattern%20Representation%20in%20Synthetically%20Generated%20Video%20Sequences%20of%20Dynamic%20Phenomena&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zdziebko,%20Pawe%C5%82&rft.date=2022-12-05&rft.volume=22&rft.issue=23&rft.spage=9489&rft.pages=9489-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22239489&rft_dat=%3Cgale_doaj_%3EA746534951%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-4644bc487d203271d638501dd220e604c5d157f459d4baca543f11b86abdc0553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2748560747&rft_id=info:pmid/36502190&rft_galeid=A746534951&rfr_iscdi=true |