Loading…
Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size
In the framework of Generalized Lorenz-Mie theory (GLMT), based on the expansion results of electromagnetic field radiation components of Bessel pincer light sheets beam acting on dielectric particles of arbitrary size, the expression of radiation force components in a Cartesian coordinate system is...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-10, Vol.12 (21), p.3723 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-22517f27caf4ebd60cd03fae33033806b3ac41475888cac8369032883c4355073 |
container_end_page | |
container_issue | 21 |
container_start_page | 3723 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 12 |
creator | Zhang, Shu Wei, Bing Wei, Qun Li, Renxian Chen, Shiguo Song, Ningning |
description | In the framework of Generalized Lorenz-Mie theory (GLMT), based on the expansion results of electromagnetic field radiation components of Bessel pincer light sheets beam acting on dielectric particles of arbitrary size, the expression of radiation force components in a Cartesian coordinate system is obtained by using the Maxwell stress tensor method. On the one hand, the effects of the refractive index and the equivalent radius of spherical particles on the distribution of radiation force are discussed; On the other hand, the influence of beam scaling parameter and beam order of Bessel pincer light sheets beam on the distribution of radiation force are investigated. The results indicate that the changes of particle's refractive index and effective radius only affect the distribution of radiation force. However, the beam scaling parameter and beam order of Bessel pincer light sheets beam have a very sharp impact on the convergence position, distribution range and bending degree far away from the wave source of the radiation force. Single-beam optical tweezers using the self-focusing and self-bending Bessel pincer light-sheets beam are crucial for applications such as single molecule biophysics, optical manipulation and particle separation/clearing. |
doi_str_mv | 10.3390/nano12213723 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f82c47dae11d48328024a783965cb9b4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746199927</galeid><doaj_id>oai_doaj_org_article_f82c47dae11d48328024a783965cb9b4</doaj_id><sourcerecordid>A746199927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-22517f27caf4ebd60cd03fae33033806b3ac41475888cac8369032883c4355073</originalsourceid><addsrcrecordid>eNpdkkFvEzEQhVcIRKu2N87IEhcObGt77LV9QQqFQqVIRQocOFle72ziaLMO9gYJfj1OU6oUX2zNPH8zbzRV9YrRSwBDr0Y3RsY5A8XhWXXKqTK1MIY9P3qfVBc5r2k5hoGW8LI6gQYaISk9rX7cbafg3UBuYvJIYk8-YM44kK9h9JjIPCxXU71YIU65pNyGxJE48jHggH5KwZPFdoXp_ucstWFKLv0mi_AHz6sXvRsyXjzcZ9X3m0_frr_U87vPt9ezee2FElPNuWSq58q7XmDbNdR3FHqHABRA06YF5wUTSmqtvfMaGkOBaw1egJRUwVl1e-B20a3tNoVN6cBGF-x9IKaldal4HND2mpeinUPGOqELhXLhlAbTSN-aVhTW-wNru2s32Hkci5_hCfRpZgwru4y_bCFIyXUBvH0ApPhzh3mym5A9DoMbMe6y5QqkVg3jTZG--U-6jrs0llHtVUIxwcAU1eVBtXTFQBj7WOqWObgON8HHEftQ4jMlGmaM4ftxvDt88CnmnLB_7J5Ru98Ze7wzRf762PGj-N-GwF-9urmz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734714139</pqid></control><display><type>article</type><title>Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Zhang, Shu ; Wei, Bing ; Wei, Qun ; Li, Renxian ; Chen, Shiguo ; Song, Ningning</creator><creatorcontrib>Zhang, Shu ; Wei, Bing ; Wei, Qun ; Li, Renxian ; Chen, Shiguo ; Song, Ningning</creatorcontrib><description>In the framework of Generalized Lorenz-Mie theory (GLMT), based on the expansion results of electromagnetic field radiation components of Bessel pincer light sheets beam acting on dielectric particles of arbitrary size, the expression of radiation force components in a Cartesian coordinate system is obtained by using the Maxwell stress tensor method. On the one hand, the effects of the refractive index and the equivalent radius of spherical particles on the distribution of radiation force are discussed; On the other hand, the influence of beam scaling parameter and beam order of Bessel pincer light sheets beam on the distribution of radiation force are investigated. The results indicate that the changes of particle's refractive index and effective radius only affect the distribution of radiation force. However, the beam scaling parameter and beam order of Bessel pincer light sheets beam have a very sharp impact on the convergence position, distribution range and bending degree far away from the wave source of the radiation force. Single-beam optical tweezers using the self-focusing and self-bending Bessel pincer light-sheets beam are crucial for applications such as single molecule biophysics, optical manipulation and particle separation/clearing.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano12213723</identifier><identifier>PMID: 36364500</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>angular spectrum expansion method ; Approximation ; Bending ; Bessel pincer light-sheets ; Biophysics ; Cartesian coordinates ; Dielectric properties ; Dielectrics ; Electric fields ; Electromagnetic fields ; Electromagnetic radiation ; Electromagnetism ; Force distribution ; GLMT ; Light ; Light sheets ; Maxwell’s stress tensor ; Methods ; Mie scattering ; Numerical analysis ; optical force ; Parameters ; Particle size ; Propagation ; Radiation ; Refractivity ; Tensors</subject><ispartof>Nanomaterials (Basel, Switzerland), 2022-10, Vol.12 (21), p.3723</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c474t-22517f27caf4ebd60cd03fae33033806b3ac41475888cac8369032883c4355073</cites><orcidid>0000-0002-7040-8672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734714139/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734714139?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36364500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Wei, Bing</creatorcontrib><creatorcontrib>Wei, Qun</creatorcontrib><creatorcontrib>Li, Renxian</creatorcontrib><creatorcontrib>Chen, Shiguo</creatorcontrib><creatorcontrib>Song, Ningning</creatorcontrib><title>Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>In the framework of Generalized Lorenz-Mie theory (GLMT), based on the expansion results of electromagnetic field radiation components of Bessel pincer light sheets beam acting on dielectric particles of arbitrary size, the expression of radiation force components in a Cartesian coordinate system is obtained by using the Maxwell stress tensor method. On the one hand, the effects of the refractive index and the equivalent radius of spherical particles on the distribution of radiation force are discussed; On the other hand, the influence of beam scaling parameter and beam order of Bessel pincer light sheets beam on the distribution of radiation force are investigated. The results indicate that the changes of particle's refractive index and effective radius only affect the distribution of radiation force. However, the beam scaling parameter and beam order of Bessel pincer light sheets beam have a very sharp impact on the convergence position, distribution range and bending degree far away from the wave source of the radiation force. Single-beam optical tweezers using the self-focusing and self-bending Bessel pincer light-sheets beam are crucial for applications such as single molecule biophysics, optical manipulation and particle separation/clearing.</description><subject>angular spectrum expansion method</subject><subject>Approximation</subject><subject>Bending</subject><subject>Bessel pincer light-sheets</subject><subject>Biophysics</subject><subject>Cartesian coordinates</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Electric fields</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetism</subject><subject>Force distribution</subject><subject>GLMT</subject><subject>Light</subject><subject>Light sheets</subject><subject>Maxwell’s stress tensor</subject><subject>Methods</subject><subject>Mie scattering</subject><subject>Numerical analysis</subject><subject>optical force</subject><subject>Parameters</subject><subject>Particle size</subject><subject>Propagation</subject><subject>Radiation</subject><subject>Refractivity</subject><subject>Tensors</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkkFvEzEQhVcIRKu2N87IEhcObGt77LV9QQqFQqVIRQocOFle72ziaLMO9gYJfj1OU6oUX2zNPH8zbzRV9YrRSwBDr0Y3RsY5A8XhWXXKqTK1MIY9P3qfVBc5r2k5hoGW8LI6gQYaISk9rX7cbafg3UBuYvJIYk8-YM44kK9h9JjIPCxXU71YIU65pNyGxJE48jHggH5KwZPFdoXp_ucstWFKLv0mi_AHz6sXvRsyXjzcZ9X3m0_frr_U87vPt9ezee2FElPNuWSq58q7XmDbNdR3FHqHABRA06YF5wUTSmqtvfMaGkOBaw1egJRUwVl1e-B20a3tNoVN6cBGF-x9IKaldal4HND2mpeinUPGOqELhXLhlAbTSN-aVhTW-wNru2s32Hkci5_hCfRpZgwru4y_bCFIyXUBvH0ApPhzh3mym5A9DoMbMe6y5QqkVg3jTZG--U-6jrs0llHtVUIxwcAU1eVBtXTFQBj7WOqWObgON8HHEftQ4jMlGmaM4ftxvDt88CnmnLB_7J5Ru98Ze7wzRf762PGj-N-GwF-9urmz</recordid><startdate>20221023</startdate><enddate>20221023</enddate><creator>Zhang, Shu</creator><creator>Wei, Bing</creator><creator>Wei, Qun</creator><creator>Li, Renxian</creator><creator>Chen, Shiguo</creator><creator>Song, Ningning</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7040-8672</orcidid></search><sort><creationdate>20221023</creationdate><title>Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size</title><author>Zhang, Shu ; Wei, Bing ; Wei, Qun ; Li, Renxian ; Chen, Shiguo ; Song, Ningning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-22517f27caf4ebd60cd03fae33033806b3ac41475888cac8369032883c4355073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>angular spectrum expansion method</topic><topic>Approximation</topic><topic>Bending</topic><topic>Bessel pincer light-sheets</topic><topic>Biophysics</topic><topic>Cartesian coordinates</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Electric fields</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetism</topic><topic>Force distribution</topic><topic>GLMT</topic><topic>Light</topic><topic>Light sheets</topic><topic>Maxwell’s stress tensor</topic><topic>Methods</topic><topic>Mie scattering</topic><topic>Numerical analysis</topic><topic>optical force</topic><topic>Parameters</topic><topic>Particle size</topic><topic>Propagation</topic><topic>Radiation</topic><topic>Refractivity</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Wei, Bing</creatorcontrib><creatorcontrib>Wei, Qun</creatorcontrib><creatorcontrib>Li, Renxian</creatorcontrib><creatorcontrib>Chen, Shiguo</creatorcontrib><creatorcontrib>Song, Ningning</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shu</au><au>Wei, Bing</au><au>Wei, Qun</au><au>Li, Renxian</au><au>Chen, Shiguo</au><au>Song, Ningning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2022-10-23</date><risdate>2022</risdate><volume>12</volume><issue>21</issue><spage>3723</spage><pages>3723-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>In the framework of Generalized Lorenz-Mie theory (GLMT), based on the expansion results of electromagnetic field radiation components of Bessel pincer light sheets beam acting on dielectric particles of arbitrary size, the expression of radiation force components in a Cartesian coordinate system is obtained by using the Maxwell stress tensor method. On the one hand, the effects of the refractive index and the equivalent radius of spherical particles on the distribution of radiation force are discussed; On the other hand, the influence of beam scaling parameter and beam order of Bessel pincer light sheets beam on the distribution of radiation force are investigated. The results indicate that the changes of particle's refractive index and effective radius only affect the distribution of radiation force. However, the beam scaling parameter and beam order of Bessel pincer light sheets beam have a very sharp impact on the convergence position, distribution range and bending degree far away from the wave source of the radiation force. Single-beam optical tweezers using the self-focusing and self-bending Bessel pincer light-sheets beam are crucial for applications such as single molecule biophysics, optical manipulation and particle separation/clearing.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36364500</pmid><doi>10.3390/nano12213723</doi><orcidid>https://orcid.org/0000-0002-7040-8672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2022-10, Vol.12 (21), p.3723 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f82c47dae11d48328024a783965cb9b4 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | angular spectrum expansion method Approximation Bending Bessel pincer light-sheets Biophysics Cartesian coordinates Dielectric properties Dielectrics Electric fields Electromagnetic fields Electromagnetic radiation Electromagnetism Force distribution GLMT Light Light sheets Maxwell’s stress tensor Methods Mie scattering Numerical analysis optical force Parameters Particle size Propagation Radiation Refractivity Tensors |
title | Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Force%20of%20Bessel%20Pincer%20Light-Sheets%20Beam%20on%20a%20Dielectric%20Sphere%20of%20Arbitrary%20Size&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Zhang,%20Shu&rft.date=2022-10-23&rft.volume=12&rft.issue=21&rft.spage=3723&rft.pages=3723-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano12213723&rft_dat=%3Cgale_doaj_%3EA746199927%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-22517f27caf4ebd60cd03fae33033806b3ac41475888cac8369032883c4355073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734714139&rft_id=info:pmid/36364500&rft_galeid=A746199927&rfr_iscdi=true |