Loading…

Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size

In the framework of Generalized Lorenz-Mie theory (GLMT), based on the expansion results of electromagnetic field radiation components of Bessel pincer light sheets beam acting on dielectric particles of arbitrary size, the expression of radiation force components in a Cartesian coordinate system is...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-10, Vol.12 (21), p.3723
Main Authors: Zhang, Shu, Wei, Bing, Wei, Qun, Li, Renxian, Chen, Shiguo, Song, Ningning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c474t-22517f27caf4ebd60cd03fae33033806b3ac41475888cac8369032883c4355073
container_end_page
container_issue 21
container_start_page 3723
container_title Nanomaterials (Basel, Switzerland)
container_volume 12
creator Zhang, Shu
Wei, Bing
Wei, Qun
Li, Renxian
Chen, Shiguo
Song, Ningning
description In the framework of Generalized Lorenz-Mie theory (GLMT), based on the expansion results of electromagnetic field radiation components of Bessel pincer light sheets beam acting on dielectric particles of arbitrary size, the expression of radiation force components in a Cartesian coordinate system is obtained by using the Maxwell stress tensor method. On the one hand, the effects of the refractive index and the equivalent radius of spherical particles on the distribution of radiation force are discussed; On the other hand, the influence of beam scaling parameter and beam order of Bessel pincer light sheets beam on the distribution of radiation force are investigated. The results indicate that the changes of particle's refractive index and effective radius only affect the distribution of radiation force. However, the beam scaling parameter and beam order of Bessel pincer light sheets beam have a very sharp impact on the convergence position, distribution range and bending degree far away from the wave source of the radiation force. Single-beam optical tweezers using the self-focusing and self-bending Bessel pincer light-sheets beam are crucial for applications such as single molecule biophysics, optical manipulation and particle separation/clearing.
doi_str_mv 10.3390/nano12213723
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f82c47dae11d48328024a783965cb9b4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746199927</galeid><doaj_id>oai_doaj_org_article_f82c47dae11d48328024a783965cb9b4</doaj_id><sourcerecordid>A746199927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-22517f27caf4ebd60cd03fae33033806b3ac41475888cac8369032883c4355073</originalsourceid><addsrcrecordid>eNpdkkFvEzEQhVcIRKu2N87IEhcObGt77LV9QQqFQqVIRQocOFle72ziaLMO9gYJfj1OU6oUX2zNPH8zbzRV9YrRSwBDr0Y3RsY5A8XhWXXKqTK1MIY9P3qfVBc5r2k5hoGW8LI6gQYaISk9rX7cbafg3UBuYvJIYk8-YM44kK9h9JjIPCxXU71YIU65pNyGxJE48jHggH5KwZPFdoXp_ucstWFKLv0mi_AHz6sXvRsyXjzcZ9X3m0_frr_U87vPt9ezee2FElPNuWSq58q7XmDbNdR3FHqHABRA06YF5wUTSmqtvfMaGkOBaw1egJRUwVl1e-B20a3tNoVN6cBGF-x9IKaldal4HND2mpeinUPGOqELhXLhlAbTSN-aVhTW-wNru2s32Hkci5_hCfRpZgwru4y_bCFIyXUBvH0ApPhzh3mym5A9DoMbMe6y5QqkVg3jTZG--U-6jrs0llHtVUIxwcAU1eVBtXTFQBj7WOqWObgON8HHEftQ4jMlGmaM4ftxvDt88CnmnLB_7J5Ru98Ze7wzRf762PGj-N-GwF-9urmz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734714139</pqid></control><display><type>article</type><title>Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Zhang, Shu ; Wei, Bing ; Wei, Qun ; Li, Renxian ; Chen, Shiguo ; Song, Ningning</creator><creatorcontrib>Zhang, Shu ; Wei, Bing ; Wei, Qun ; Li, Renxian ; Chen, Shiguo ; Song, Ningning</creatorcontrib><description>In the framework of Generalized Lorenz-Mie theory (GLMT), based on the expansion results of electromagnetic field radiation components of Bessel pincer light sheets beam acting on dielectric particles of arbitrary size, the expression of radiation force components in a Cartesian coordinate system is obtained by using the Maxwell stress tensor method. On the one hand, the effects of the refractive index and the equivalent radius of spherical particles on the distribution of radiation force are discussed; On the other hand, the influence of beam scaling parameter and beam order of Bessel pincer light sheets beam on the distribution of radiation force are investigated. The results indicate that the changes of particle's refractive index and effective radius only affect the distribution of radiation force. However, the beam scaling parameter and beam order of Bessel pincer light sheets beam have a very sharp impact on the convergence position, distribution range and bending degree far away from the wave source of the radiation force. Single-beam optical tweezers using the self-focusing and self-bending Bessel pincer light-sheets beam are crucial for applications such as single molecule biophysics, optical manipulation and particle separation/clearing.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano12213723</identifier><identifier>PMID: 36364500</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>angular spectrum expansion method ; Approximation ; Bending ; Bessel pincer light-sheets ; Biophysics ; Cartesian coordinates ; Dielectric properties ; Dielectrics ; Electric fields ; Electromagnetic fields ; Electromagnetic radiation ; Electromagnetism ; Force distribution ; GLMT ; Light ; Light sheets ; Maxwell’s stress tensor ; Methods ; Mie scattering ; Numerical analysis ; optical force ; Parameters ; Particle size ; Propagation ; Radiation ; Refractivity ; Tensors</subject><ispartof>Nanomaterials (Basel, Switzerland), 2022-10, Vol.12 (21), p.3723</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c474t-22517f27caf4ebd60cd03fae33033806b3ac41475888cac8369032883c4355073</cites><orcidid>0000-0002-7040-8672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734714139/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734714139?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36364500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Wei, Bing</creatorcontrib><creatorcontrib>Wei, Qun</creatorcontrib><creatorcontrib>Li, Renxian</creatorcontrib><creatorcontrib>Chen, Shiguo</creatorcontrib><creatorcontrib>Song, Ningning</creatorcontrib><title>Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>In the framework of Generalized Lorenz-Mie theory (GLMT), based on the expansion results of electromagnetic field radiation components of Bessel pincer light sheets beam acting on dielectric particles of arbitrary size, the expression of radiation force components in a Cartesian coordinate system is obtained by using the Maxwell stress tensor method. On the one hand, the effects of the refractive index and the equivalent radius of spherical particles on the distribution of radiation force are discussed; On the other hand, the influence of beam scaling parameter and beam order of Bessel pincer light sheets beam on the distribution of radiation force are investigated. The results indicate that the changes of particle's refractive index and effective radius only affect the distribution of radiation force. However, the beam scaling parameter and beam order of Bessel pincer light sheets beam have a very sharp impact on the convergence position, distribution range and bending degree far away from the wave source of the radiation force. Single-beam optical tweezers using the self-focusing and self-bending Bessel pincer light-sheets beam are crucial for applications such as single molecule biophysics, optical manipulation and particle separation/clearing.</description><subject>angular spectrum expansion method</subject><subject>Approximation</subject><subject>Bending</subject><subject>Bessel pincer light-sheets</subject><subject>Biophysics</subject><subject>Cartesian coordinates</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Electric fields</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetism</subject><subject>Force distribution</subject><subject>GLMT</subject><subject>Light</subject><subject>Light sheets</subject><subject>Maxwell’s stress tensor</subject><subject>Methods</subject><subject>Mie scattering</subject><subject>Numerical analysis</subject><subject>optical force</subject><subject>Parameters</subject><subject>Particle size</subject><subject>Propagation</subject><subject>Radiation</subject><subject>Refractivity</subject><subject>Tensors</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkkFvEzEQhVcIRKu2N87IEhcObGt77LV9QQqFQqVIRQocOFle72ziaLMO9gYJfj1OU6oUX2zNPH8zbzRV9YrRSwBDr0Y3RsY5A8XhWXXKqTK1MIY9P3qfVBc5r2k5hoGW8LI6gQYaISk9rX7cbafg3UBuYvJIYk8-YM44kK9h9JjIPCxXU71YIU65pNyGxJE48jHggH5KwZPFdoXp_ucstWFKLv0mi_AHz6sXvRsyXjzcZ9X3m0_frr_U87vPt9ezee2FElPNuWSq58q7XmDbNdR3FHqHABRA06YF5wUTSmqtvfMaGkOBaw1egJRUwVl1e-B20a3tNoVN6cBGF-x9IKaldal4HND2mpeinUPGOqELhXLhlAbTSN-aVhTW-wNru2s32Hkci5_hCfRpZgwru4y_bCFIyXUBvH0ApPhzh3mym5A9DoMbMe6y5QqkVg3jTZG--U-6jrs0llHtVUIxwcAU1eVBtXTFQBj7WOqWObgON8HHEftQ4jMlGmaM4ftxvDt88CnmnLB_7J5Ru98Ze7wzRf762PGj-N-GwF-9urmz</recordid><startdate>20221023</startdate><enddate>20221023</enddate><creator>Zhang, Shu</creator><creator>Wei, Bing</creator><creator>Wei, Qun</creator><creator>Li, Renxian</creator><creator>Chen, Shiguo</creator><creator>Song, Ningning</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7040-8672</orcidid></search><sort><creationdate>20221023</creationdate><title>Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size</title><author>Zhang, Shu ; Wei, Bing ; Wei, Qun ; Li, Renxian ; Chen, Shiguo ; Song, Ningning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-22517f27caf4ebd60cd03fae33033806b3ac41475888cac8369032883c4355073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>angular spectrum expansion method</topic><topic>Approximation</topic><topic>Bending</topic><topic>Bessel pincer light-sheets</topic><topic>Biophysics</topic><topic>Cartesian coordinates</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Electric fields</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetism</topic><topic>Force distribution</topic><topic>GLMT</topic><topic>Light</topic><topic>Light sheets</topic><topic>Maxwell’s stress tensor</topic><topic>Methods</topic><topic>Mie scattering</topic><topic>Numerical analysis</topic><topic>optical force</topic><topic>Parameters</topic><topic>Particle size</topic><topic>Propagation</topic><topic>Radiation</topic><topic>Refractivity</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Wei, Bing</creatorcontrib><creatorcontrib>Wei, Qun</creatorcontrib><creatorcontrib>Li, Renxian</creatorcontrib><creatorcontrib>Chen, Shiguo</creatorcontrib><creatorcontrib>Song, Ningning</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shu</au><au>Wei, Bing</au><au>Wei, Qun</au><au>Li, Renxian</au><au>Chen, Shiguo</au><au>Song, Ningning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2022-10-23</date><risdate>2022</risdate><volume>12</volume><issue>21</issue><spage>3723</spage><pages>3723-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>In the framework of Generalized Lorenz-Mie theory (GLMT), based on the expansion results of electromagnetic field radiation components of Bessel pincer light sheets beam acting on dielectric particles of arbitrary size, the expression of radiation force components in a Cartesian coordinate system is obtained by using the Maxwell stress tensor method. On the one hand, the effects of the refractive index and the equivalent radius of spherical particles on the distribution of radiation force are discussed; On the other hand, the influence of beam scaling parameter and beam order of Bessel pincer light sheets beam on the distribution of radiation force are investigated. The results indicate that the changes of particle's refractive index and effective radius only affect the distribution of radiation force. However, the beam scaling parameter and beam order of Bessel pincer light sheets beam have a very sharp impact on the convergence position, distribution range and bending degree far away from the wave source of the radiation force. Single-beam optical tweezers using the self-focusing and self-bending Bessel pincer light-sheets beam are crucial for applications such as single molecule biophysics, optical manipulation and particle separation/clearing.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36364500</pmid><doi>10.3390/nano12213723</doi><orcidid>https://orcid.org/0000-0002-7040-8672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2022-10, Vol.12 (21), p.3723
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f82c47dae11d48328024a783965cb9b4
source Open Access: PubMed Central; Publicly Available Content Database
subjects angular spectrum expansion method
Approximation
Bending
Bessel pincer light-sheets
Biophysics
Cartesian coordinates
Dielectric properties
Dielectrics
Electric fields
Electromagnetic fields
Electromagnetic radiation
Electromagnetism
Force distribution
GLMT
Light
Light sheets
Maxwell’s stress tensor
Methods
Mie scattering
Numerical analysis
optical force
Parameters
Particle size
Propagation
Radiation
Refractivity
Tensors
title Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Force%20of%20Bessel%20Pincer%20Light-Sheets%20Beam%20on%20a%20Dielectric%20Sphere%20of%20Arbitrary%20Size&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Zhang,%20Shu&rft.date=2022-10-23&rft.volume=12&rft.issue=21&rft.spage=3723&rft.pages=3723-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano12213723&rft_dat=%3Cgale_doaj_%3EA746199927%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-22517f27caf4ebd60cd03fae33033806b3ac41475888cac8369032883c4355073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734714139&rft_id=info:pmid/36364500&rft_galeid=A746199927&rfr_iscdi=true