Loading…
Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments
Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage of the fact that time is a continuous variable, and existing clustering methods often group biologically unrelated genes together. We...
Saved in:
Published in: | BMC bioinformatics 2005-04, Vol.6 (1), p.106-106, Article 106 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523 |
---|---|
cites | cdi_FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523 |
container_end_page | 106 |
container_issue | 1 |
container_start_page | 106 |
container_title | BMC bioinformatics |
container_volume | 6 |
creator | Liu, Hua Tarima, Sergey Borders, Aaron S Getchell, Thomas V Getchell, Marilyn L Stromberg, Arnold J |
description | Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage of the fact that time is a continuous variable, and existing clustering methods often group biologically unrelated genes together.
We propose a quadratic regression method for identification of differentially expressed genes and classification of genes based on their temporal expression profiles for non-cyclic short time-course microarray data. This method treats time as a continuous variable, therefore preserves actual time information. We applied this method to a microarray time-course study of gene expression at short time intervals following deafferentation of olfactory receptor neurons. Nine regression patterns have been identified and shown to fit gene expression profiles better than k-means clusters. EASE analysis identified over-represented functional groups in each regression pattern and each k-means cluster, which further demonstrated that the regression method provided more biologically meaningful classifications of gene expression profiles than the k-means clustering method. Comparison with Peddada et al.'s order-restricted inference method showed that our method provides a different perspective on the temporal gene profiles. Reliability study indicates that regression patterns have the highest reliabilities.
Our results demonstrate that the proposed quadratic regression method improves gene discovery and pattern recognition for non-cyclic short time-course microarray data. With a freely accessible Excel macro, investigators can readily apply this method to their microarray data. |
doi_str_mv | 10.1186/1471-2105-6-106 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f82ceb9a7de04470a893739ca2fabf2b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f82ceb9a7de04470a893739ca2fabf2b</doaj_id><sourcerecordid>17531447</sourcerecordid><originalsourceid>FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523</originalsourceid><addsrcrecordid>eNqNkktv1TAQhSMEoqWwZoeyYhdqx89skKDiUakSQoK15djj1FViX-ykIjt-Og73qvRKIFjZ8pz5PDNnquo5Rq8wlvwcU4GbFiPW8AYj_qA6vXt5eO9-Uj3J-QYhLCRij6sTzCRDVHSn1Y_Pi7ZJz97UCYYEOfsYah30uGafaxdTPUCA2vps4i2ktcRsvdPzDCmUFBOH4OctZ5OGGBqzmrHQ8nVMcz37CRoTl5ShnrxJUaek1xq-7yCVUJjz0-qR02OGZ4fzrPr6_t2Xi4_N1acPlxdvrpqeCTk3HeG4t9JQwajsRWvASdKBRBSY5RQBcUJIS02HnDMCWcmRsa3UyPWas5acVZd7ro36Ru3K7zqtKmqvfj3ENCidyhhGUE4WfN9pYQFRKpCWHRGkM7p1undtX1iv96zd0k9gTekj6fEIehwJ_loN8VZh3ArEZQG83QN6H_8COI6YOKnNTbW5qbgqXhfIy0MVKX5bIM9qKibBOOoAccmKC9kKKug_hVgwgkuj_yEkRJKWFeH5XlgczTmBuysdI7Ut5h-KfXF_ZL_1h00kPwE85uL_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17338325</pqid></control><display><type>article</type><title>Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments</title><source>PubMed Central (Open access)</source><creator>Liu, Hua ; Tarima, Sergey ; Borders, Aaron S ; Getchell, Thomas V ; Getchell, Marilyn L ; Stromberg, Arnold J</creator><creatorcontrib>Liu, Hua ; Tarima, Sergey ; Borders, Aaron S ; Getchell, Thomas V ; Getchell, Marilyn L ; Stromberg, Arnold J</creatorcontrib><description>Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage of the fact that time is a continuous variable, and existing clustering methods often group biologically unrelated genes together.
We propose a quadratic regression method for identification of differentially expressed genes and classification of genes based on their temporal expression profiles for non-cyclic short time-course microarray data. This method treats time as a continuous variable, therefore preserves actual time information. We applied this method to a microarray time-course study of gene expression at short time intervals following deafferentation of olfactory receptor neurons. Nine regression patterns have been identified and shown to fit gene expression profiles better than k-means clusters. EASE analysis identified over-represented functional groups in each regression pattern and each k-means cluster, which further demonstrated that the regression method provided more biologically meaningful classifications of gene expression profiles than the k-means clustering method. Comparison with Peddada et al.'s order-restricted inference method showed that our method provides a different perspective on the temporal gene profiles. Reliability study indicates that regression patterns have the highest reliabilities.
Our results demonstrate that the proposed quadratic regression method improves gene discovery and pattern recognition for non-cyclic short time-course microarray data. With a freely accessible Excel macro, investigators can readily apply this method to their microarray data.</description><identifier>ISSN: 1471-2105</identifier><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2105</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/1471-2105-6-106</identifier><identifier>PMID: 15850479</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis of Variance ; Animals ; Artificial Intelligence ; Cluster Analysis ; Computational Biology - methods ; Computer Graphics ; Computer Simulation ; Data Interpretation, Statistical ; Databases, Genetic ; Gene Expression Profiling - methods ; Gene Expression Regulation ; Gene Library ; Genomics - methods ; Humans ; Methodology ; Models, Theoretical ; Olfactory Receptor Neurons - metabolism ; Oligonucleotide Array Sequence Analysis - methods ; Pattern Recognition, Automated ; Probability ; Regression Analysis ; Reproducibility of Results ; Sequence Alignment ; Sequence Analysis, DNA ; Software ; Time Factors</subject><ispartof>BMC bioinformatics, 2005-04, Vol.6 (1), p.106-106, Article 106</ispartof><rights>Copyright © 2005 Liu et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523</citedby><cites>FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1127068/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1127068/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15850479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Hua</creatorcontrib><creatorcontrib>Tarima, Sergey</creatorcontrib><creatorcontrib>Borders, Aaron S</creatorcontrib><creatorcontrib>Getchell, Thomas V</creatorcontrib><creatorcontrib>Getchell, Marilyn L</creatorcontrib><creatorcontrib>Stromberg, Arnold J</creatorcontrib><title>Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage of the fact that time is a continuous variable, and existing clustering methods often group biologically unrelated genes together.
We propose a quadratic regression method for identification of differentially expressed genes and classification of genes based on their temporal expression profiles for non-cyclic short time-course microarray data. This method treats time as a continuous variable, therefore preserves actual time information. We applied this method to a microarray time-course study of gene expression at short time intervals following deafferentation of olfactory receptor neurons. Nine regression patterns have been identified and shown to fit gene expression profiles better than k-means clusters. EASE analysis identified over-represented functional groups in each regression pattern and each k-means cluster, which further demonstrated that the regression method provided more biologically meaningful classifications of gene expression profiles than the k-means clustering method. Comparison with Peddada et al.'s order-restricted inference method showed that our method provides a different perspective on the temporal gene profiles. Reliability study indicates that regression patterns have the highest reliabilities.
Our results demonstrate that the proposed quadratic regression method improves gene discovery and pattern recognition for non-cyclic short time-course microarray data. With a freely accessible Excel macro, investigators can readily apply this method to their microarray data.</description><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Cluster Analysis</subject><subject>Computational Biology - methods</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Databases, Genetic</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation</subject><subject>Gene Library</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Methodology</subject><subject>Models, Theoretical</subject><subject>Olfactory Receptor Neurons - metabolism</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Pattern Recognition, Automated</subject><subject>Probability</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA</subject><subject>Software</subject><subject>Time Factors</subject><issn>1471-2105</issn><issn>1471-2164</issn><issn>1471-2105</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNkktv1TAQhSMEoqWwZoeyYhdqx89skKDiUakSQoK15djj1FViX-ykIjt-Og73qvRKIFjZ8pz5PDNnquo5Rq8wlvwcU4GbFiPW8AYj_qA6vXt5eO9-Uj3J-QYhLCRij6sTzCRDVHSn1Y_Pi7ZJz97UCYYEOfsYah30uGafaxdTPUCA2vps4i2ktcRsvdPzDCmUFBOH4OctZ5OGGBqzmrHQ8nVMcz37CRoTl5ShnrxJUaek1xq-7yCVUJjz0-qR02OGZ4fzrPr6_t2Xi4_N1acPlxdvrpqeCTk3HeG4t9JQwajsRWvASdKBRBSY5RQBcUJIS02HnDMCWcmRsa3UyPWas5acVZd7ro36Ru3K7zqtKmqvfj3ENCidyhhGUE4WfN9pYQFRKpCWHRGkM7p1undtX1iv96zd0k9gTekj6fEIehwJ_loN8VZh3ArEZQG83QN6H_8COI6YOKnNTbW5qbgqXhfIy0MVKX5bIM9qKibBOOoAccmKC9kKKug_hVgwgkuj_yEkRJKWFeH5XlgczTmBuysdI7Ut5h-KfXF_ZL_1h00kPwE85uL_</recordid><startdate>20050425</startdate><enddate>20050425</enddate><creator>Liu, Hua</creator><creator>Tarima, Sergey</creator><creator>Borders, Aaron S</creator><creator>Getchell, Thomas V</creator><creator>Getchell, Marilyn L</creator><creator>Stromberg, Arnold J</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20050425</creationdate><title>Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments</title><author>Liu, Hua ; Tarima, Sergey ; Borders, Aaron S ; Getchell, Thomas V ; Getchell, Marilyn L ; Stromberg, Arnold J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Cluster Analysis</topic><topic>Computational Biology - methods</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Databases, Genetic</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation</topic><topic>Gene Library</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Methodology</topic><topic>Models, Theoretical</topic><topic>Olfactory Receptor Neurons - metabolism</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Pattern Recognition, Automated</topic><topic>Probability</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA</topic><topic>Software</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hua</creatorcontrib><creatorcontrib>Tarima, Sergey</creatorcontrib><creatorcontrib>Borders, Aaron S</creatorcontrib><creatorcontrib>Getchell, Thomas V</creatorcontrib><creatorcontrib>Getchell, Marilyn L</creatorcontrib><creatorcontrib>Stromberg, Arnold J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hua</au><au>Tarima, Sergey</au><au>Borders, Aaron S</au><au>Getchell, Thomas V</au><au>Getchell, Marilyn L</au><au>Stromberg, Arnold J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2005-04-25</date><risdate>2005</risdate><volume>6</volume><issue>1</issue><spage>106</spage><epage>106</epage><pages>106-106</pages><artnum>106</artnum><issn>1471-2105</issn><issn>1471-2164</issn><eissn>1471-2105</eissn><eissn>1471-2164</eissn><abstract>Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage of the fact that time is a continuous variable, and existing clustering methods often group biologically unrelated genes together.
We propose a quadratic regression method for identification of differentially expressed genes and classification of genes based on their temporal expression profiles for non-cyclic short time-course microarray data. This method treats time as a continuous variable, therefore preserves actual time information. We applied this method to a microarray time-course study of gene expression at short time intervals following deafferentation of olfactory receptor neurons. Nine regression patterns have been identified and shown to fit gene expression profiles better than k-means clusters. EASE analysis identified over-represented functional groups in each regression pattern and each k-means cluster, which further demonstrated that the regression method provided more biologically meaningful classifications of gene expression profiles than the k-means clustering method. Comparison with Peddada et al.'s order-restricted inference method showed that our method provides a different perspective on the temporal gene profiles. Reliability study indicates that regression patterns have the highest reliabilities.
Our results demonstrate that the proposed quadratic regression method improves gene discovery and pattern recognition for non-cyclic short time-course microarray data. With a freely accessible Excel macro, investigators can readily apply this method to their microarray data.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>15850479</pmid><doi>10.1186/1471-2105-6-106</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2005-04, Vol.6 (1), p.106-106, Article 106 |
issn | 1471-2105 1471-2164 1471-2105 1471-2164 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f82ceb9a7de04470a893739ca2fabf2b |
source | PubMed Central (Open access) |
subjects | Algorithms Analysis of Variance Animals Artificial Intelligence Cluster Analysis Computational Biology - methods Computer Graphics Computer Simulation Data Interpretation, Statistical Databases, Genetic Gene Expression Profiling - methods Gene Expression Regulation Gene Library Genomics - methods Humans Methodology Models, Theoretical Olfactory Receptor Neurons - metabolism Oligonucleotide Array Sequence Analysis - methods Pattern Recognition, Automated Probability Regression Analysis Reproducibility of Results Sequence Alignment Sequence Analysis, DNA Software Time Factors |
title | Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20regression%20analysis%20for%20gene%20discovery%20and%20pattern%20recognition%20for%20non-cyclic%20short%20time-course%20microarray%20experiments&rft.jtitle=BMC%20bioinformatics&rft.au=Liu,%20Hua&rft.date=2005-04-25&rft.volume=6&rft.issue=1&rft.spage=106&rft.epage=106&rft.pages=106-106&rft.artnum=106&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-6-106&rft_dat=%3Cproquest_doaj_%3E17531447%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17338325&rft_id=info:pmid/15850479&rfr_iscdi=true |