Loading…

Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments

Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage of the fact that time is a continuous variable, and existing clustering methods often group biologically unrelated genes together. We...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2005-04, Vol.6 (1), p.106-106, Article 106
Main Authors: Liu, Hua, Tarima, Sergey, Borders, Aaron S, Getchell, Thomas V, Getchell, Marilyn L, Stromberg, Arnold J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523
cites cdi_FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523
container_end_page 106
container_issue 1
container_start_page 106
container_title BMC bioinformatics
container_volume 6
creator Liu, Hua
Tarima, Sergey
Borders, Aaron S
Getchell, Thomas V
Getchell, Marilyn L
Stromberg, Arnold J
description Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage of the fact that time is a continuous variable, and existing clustering methods often group biologically unrelated genes together. We propose a quadratic regression method for identification of differentially expressed genes and classification of genes based on their temporal expression profiles for non-cyclic short time-course microarray data. This method treats time as a continuous variable, therefore preserves actual time information. We applied this method to a microarray time-course study of gene expression at short time intervals following deafferentation of olfactory receptor neurons. Nine regression patterns have been identified and shown to fit gene expression profiles better than k-means clusters. EASE analysis identified over-represented functional groups in each regression pattern and each k-means cluster, which further demonstrated that the regression method provided more biologically meaningful classifications of gene expression profiles than the k-means clustering method. Comparison with Peddada et al.'s order-restricted inference method showed that our method provides a different perspective on the temporal gene profiles. Reliability study indicates that regression patterns have the highest reliabilities. Our results demonstrate that the proposed quadratic regression method improves gene discovery and pattern recognition for non-cyclic short time-course microarray data. With a freely accessible Excel macro, investigators can readily apply this method to their microarray data.
doi_str_mv 10.1186/1471-2105-6-106
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f82ceb9a7de04470a893739ca2fabf2b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f82ceb9a7de04470a893739ca2fabf2b</doaj_id><sourcerecordid>17531447</sourcerecordid><originalsourceid>FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523</originalsourceid><addsrcrecordid>eNqNkktv1TAQhSMEoqWwZoeyYhdqx89skKDiUakSQoK15djj1FViX-ykIjt-Og73qvRKIFjZ8pz5PDNnquo5Rq8wlvwcU4GbFiPW8AYj_qA6vXt5eO9-Uj3J-QYhLCRij6sTzCRDVHSn1Y_Pi7ZJz97UCYYEOfsYah30uGafaxdTPUCA2vps4i2ktcRsvdPzDCmUFBOH4OctZ5OGGBqzmrHQ8nVMcz37CRoTl5ShnrxJUaek1xq-7yCVUJjz0-qR02OGZ4fzrPr6_t2Xi4_N1acPlxdvrpqeCTk3HeG4t9JQwajsRWvASdKBRBSY5RQBcUJIS02HnDMCWcmRsa3UyPWas5acVZd7ro36Ru3K7zqtKmqvfj3ENCidyhhGUE4WfN9pYQFRKpCWHRGkM7p1undtX1iv96zd0k9gTekj6fEIehwJ_loN8VZh3ArEZQG83QN6H_8COI6YOKnNTbW5qbgqXhfIy0MVKX5bIM9qKibBOOoAccmKC9kKKug_hVgwgkuj_yEkRJKWFeH5XlgczTmBuysdI7Ut5h-KfXF_ZL_1h00kPwE85uL_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17338325</pqid></control><display><type>article</type><title>Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments</title><source>PubMed Central (Open access)</source><creator>Liu, Hua ; Tarima, Sergey ; Borders, Aaron S ; Getchell, Thomas V ; Getchell, Marilyn L ; Stromberg, Arnold J</creator><creatorcontrib>Liu, Hua ; Tarima, Sergey ; Borders, Aaron S ; Getchell, Thomas V ; Getchell, Marilyn L ; Stromberg, Arnold J</creatorcontrib><description>Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage of the fact that time is a continuous variable, and existing clustering methods often group biologically unrelated genes together. We propose a quadratic regression method for identification of differentially expressed genes and classification of genes based on their temporal expression profiles for non-cyclic short time-course microarray data. This method treats time as a continuous variable, therefore preserves actual time information. We applied this method to a microarray time-course study of gene expression at short time intervals following deafferentation of olfactory receptor neurons. Nine regression patterns have been identified and shown to fit gene expression profiles better than k-means clusters. EASE analysis identified over-represented functional groups in each regression pattern and each k-means cluster, which further demonstrated that the regression method provided more biologically meaningful classifications of gene expression profiles than the k-means clustering method. Comparison with Peddada et al.'s order-restricted inference method showed that our method provides a different perspective on the temporal gene profiles. Reliability study indicates that regression patterns have the highest reliabilities. Our results demonstrate that the proposed quadratic regression method improves gene discovery and pattern recognition for non-cyclic short time-course microarray data. With a freely accessible Excel macro, investigators can readily apply this method to their microarray data.</description><identifier>ISSN: 1471-2105</identifier><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2105</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/1471-2105-6-106</identifier><identifier>PMID: 15850479</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis of Variance ; Animals ; Artificial Intelligence ; Cluster Analysis ; Computational Biology - methods ; Computer Graphics ; Computer Simulation ; Data Interpretation, Statistical ; Databases, Genetic ; Gene Expression Profiling - methods ; Gene Expression Regulation ; Gene Library ; Genomics - methods ; Humans ; Methodology ; Models, Theoretical ; Olfactory Receptor Neurons - metabolism ; Oligonucleotide Array Sequence Analysis - methods ; Pattern Recognition, Automated ; Probability ; Regression Analysis ; Reproducibility of Results ; Sequence Alignment ; Sequence Analysis, DNA ; Software ; Time Factors</subject><ispartof>BMC bioinformatics, 2005-04, Vol.6 (1), p.106-106, Article 106</ispartof><rights>Copyright © 2005 Liu et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523</citedby><cites>FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1127068/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1127068/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15850479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Hua</creatorcontrib><creatorcontrib>Tarima, Sergey</creatorcontrib><creatorcontrib>Borders, Aaron S</creatorcontrib><creatorcontrib>Getchell, Thomas V</creatorcontrib><creatorcontrib>Getchell, Marilyn L</creatorcontrib><creatorcontrib>Stromberg, Arnold J</creatorcontrib><title>Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage of the fact that time is a continuous variable, and existing clustering methods often group biologically unrelated genes together. We propose a quadratic regression method for identification of differentially expressed genes and classification of genes based on their temporal expression profiles for non-cyclic short time-course microarray data. This method treats time as a continuous variable, therefore preserves actual time information. We applied this method to a microarray time-course study of gene expression at short time intervals following deafferentation of olfactory receptor neurons. Nine regression patterns have been identified and shown to fit gene expression profiles better than k-means clusters. EASE analysis identified over-represented functional groups in each regression pattern and each k-means cluster, which further demonstrated that the regression method provided more biologically meaningful classifications of gene expression profiles than the k-means clustering method. Comparison with Peddada et al.'s order-restricted inference method showed that our method provides a different perspective on the temporal gene profiles. Reliability study indicates that regression patterns have the highest reliabilities. Our results demonstrate that the proposed quadratic regression method improves gene discovery and pattern recognition for non-cyclic short time-course microarray data. With a freely accessible Excel macro, investigators can readily apply this method to their microarray data.</description><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Cluster Analysis</subject><subject>Computational Biology - methods</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Databases, Genetic</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation</subject><subject>Gene Library</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Methodology</subject><subject>Models, Theoretical</subject><subject>Olfactory Receptor Neurons - metabolism</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Pattern Recognition, Automated</subject><subject>Probability</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA</subject><subject>Software</subject><subject>Time Factors</subject><issn>1471-2105</issn><issn>1471-2164</issn><issn>1471-2105</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNkktv1TAQhSMEoqWwZoeyYhdqx89skKDiUakSQoK15djj1FViX-ykIjt-Og73qvRKIFjZ8pz5PDNnquo5Rq8wlvwcU4GbFiPW8AYj_qA6vXt5eO9-Uj3J-QYhLCRij6sTzCRDVHSn1Y_Pi7ZJz97UCYYEOfsYah30uGafaxdTPUCA2vps4i2ktcRsvdPzDCmUFBOH4OctZ5OGGBqzmrHQ8nVMcz37CRoTl5ShnrxJUaek1xq-7yCVUJjz0-qR02OGZ4fzrPr6_t2Xi4_N1acPlxdvrpqeCTk3HeG4t9JQwajsRWvASdKBRBSY5RQBcUJIS02HnDMCWcmRsa3UyPWas5acVZd7ro36Ru3K7zqtKmqvfj3ENCidyhhGUE4WfN9pYQFRKpCWHRGkM7p1undtX1iv96zd0k9gTekj6fEIehwJ_loN8VZh3ArEZQG83QN6H_8COI6YOKnNTbW5qbgqXhfIy0MVKX5bIM9qKibBOOoAccmKC9kKKug_hVgwgkuj_yEkRJKWFeH5XlgczTmBuysdI7Ut5h-KfXF_ZL_1h00kPwE85uL_</recordid><startdate>20050425</startdate><enddate>20050425</enddate><creator>Liu, Hua</creator><creator>Tarima, Sergey</creator><creator>Borders, Aaron S</creator><creator>Getchell, Thomas V</creator><creator>Getchell, Marilyn L</creator><creator>Stromberg, Arnold J</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20050425</creationdate><title>Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments</title><author>Liu, Hua ; Tarima, Sergey ; Borders, Aaron S ; Getchell, Thomas V ; Getchell, Marilyn L ; Stromberg, Arnold J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Cluster Analysis</topic><topic>Computational Biology - methods</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Databases, Genetic</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation</topic><topic>Gene Library</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Methodology</topic><topic>Models, Theoretical</topic><topic>Olfactory Receptor Neurons - metabolism</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Pattern Recognition, Automated</topic><topic>Probability</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA</topic><topic>Software</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hua</creatorcontrib><creatorcontrib>Tarima, Sergey</creatorcontrib><creatorcontrib>Borders, Aaron S</creatorcontrib><creatorcontrib>Getchell, Thomas V</creatorcontrib><creatorcontrib>Getchell, Marilyn L</creatorcontrib><creatorcontrib>Stromberg, Arnold J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hua</au><au>Tarima, Sergey</au><au>Borders, Aaron S</au><au>Getchell, Thomas V</au><au>Getchell, Marilyn L</au><au>Stromberg, Arnold J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2005-04-25</date><risdate>2005</risdate><volume>6</volume><issue>1</issue><spage>106</spage><epage>106</epage><pages>106-106</pages><artnum>106</artnum><issn>1471-2105</issn><issn>1471-2164</issn><eissn>1471-2105</eissn><eissn>1471-2164</eissn><abstract>Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage of the fact that time is a continuous variable, and existing clustering methods often group biologically unrelated genes together. We propose a quadratic regression method for identification of differentially expressed genes and classification of genes based on their temporal expression profiles for non-cyclic short time-course microarray data. This method treats time as a continuous variable, therefore preserves actual time information. We applied this method to a microarray time-course study of gene expression at short time intervals following deafferentation of olfactory receptor neurons. Nine regression patterns have been identified and shown to fit gene expression profiles better than k-means clusters. EASE analysis identified over-represented functional groups in each regression pattern and each k-means cluster, which further demonstrated that the regression method provided more biologically meaningful classifications of gene expression profiles than the k-means clustering method. Comparison with Peddada et al.'s order-restricted inference method showed that our method provides a different perspective on the temporal gene profiles. Reliability study indicates that regression patterns have the highest reliabilities. Our results demonstrate that the proposed quadratic regression method improves gene discovery and pattern recognition for non-cyclic short time-course microarray data. With a freely accessible Excel macro, investigators can readily apply this method to their microarray data.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>15850479</pmid><doi>10.1186/1471-2105-6-106</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2005-04, Vol.6 (1), p.106-106, Article 106
issn 1471-2105
1471-2164
1471-2105
1471-2164
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f82ceb9a7de04470a893739ca2fabf2b
source PubMed Central (Open access)
subjects Algorithms
Analysis of Variance
Animals
Artificial Intelligence
Cluster Analysis
Computational Biology - methods
Computer Graphics
Computer Simulation
Data Interpretation, Statistical
Databases, Genetic
Gene Expression Profiling - methods
Gene Expression Regulation
Gene Library
Genomics - methods
Humans
Methodology
Models, Theoretical
Olfactory Receptor Neurons - metabolism
Oligonucleotide Array Sequence Analysis - methods
Pattern Recognition, Automated
Probability
Regression Analysis
Reproducibility of Results
Sequence Alignment
Sequence Analysis, DNA
Software
Time Factors
title Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20regression%20analysis%20for%20gene%20discovery%20and%20pattern%20recognition%20for%20non-cyclic%20short%20time-course%20microarray%20experiments&rft.jtitle=BMC%20bioinformatics&rft.au=Liu,%20Hua&rft.date=2005-04-25&rft.volume=6&rft.issue=1&rft.spage=106&rft.epage=106&rft.pages=106-106&rft.artnum=106&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-6-106&rft_dat=%3Cproquest_doaj_%3E17531447%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b578t-9361bd8c47548b72cef839e804e5d640e3f778d4c90ffc70d860cd28a0fba6523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17338325&rft_id=info:pmid/15850479&rfr_iscdi=true