Loading…

Characterization of two iPSC lines from patients with maternally inherited leigh (MILS) and neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome carrying the MT-ATP6 m.8993 T>G mutation at different degrees of heteroplasmy

Human-derived experimental systems such as induced pluripotent stem cell (iPSC)-derived models are useful tools to study mechanisms and potential therapeutic approaches for mitochondrial disorders. Here, we generated two iPSC lines from fibroblasts of patients carrying mutations at MT-ATP6 (m.8993 T...

Full description

Saved in:
Bibliographic Details
Published in:Stem cell research 2024-12, Vol.81, p.103547, Article 103547
Main Authors: Haschke, Anna Maria, Diecke, Sebastian, Schuelke, Markus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human-derived experimental systems such as induced pluripotent stem cell (iPSC)-derived models are useful tools to study mechanisms and potential therapeutic approaches for mitochondrial disorders. Here, we generated two iPSC lines from fibroblasts of patients carrying mutations at MT-ATP6 (m.8993 T>G). One patient with 96 % heteroplasmy suffered from Neuropathy, Ataxia, and Retinitis pigmentosa (NARP) syndrome, while the other patient with a homoplasmic mutation suffered from Maternally Inherited Leigh Syndrome (MILS). For reprogramming, we delivered reprogramming factors using Sendai virus and evaluated the pluripotency characteristics of the derived iPSCs. The degree of heteroplasmy remained stable after reprogramming.
ISSN:1873-5061
1876-7753
1876-7753
DOI:10.1016/j.scr.2024.103547