Loading…
Is there an association between enhanced choline and β-catenin pathway in breast cancer? A pilot study by MR Spectroscopy and ELISA
Total choline (tCho) was documented as a biomarker for breast cancer diagnosis by in vivo MRS. To understand the molecular mechanisms behind elevated tCho in breast cancer, an association of tCho with β-catenin and cyclin D1 was evaluated. Hundred fractions from 20 malignant, 10 benign and 20 non-in...
Saved in:
Published in: | Scientific reports 2017-05, Vol.7 (1), p.2221-11, Article 2221 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Total choline (tCho) was documented as a biomarker for breast cancer diagnosis by
in vivo
MRS. To understand the molecular mechanisms behind elevated tCho in breast cancer, an association of tCho with β-catenin and cyclin D1 was evaluated. Hundred fractions from 20 malignant, 10 benign and 20 non-involved breast tissues were isolated. Cytosolic and nuclear expressions of β-catenin and cyclin D1 were estimated using ELISA. Higher tCho was seen in malignant compared to benign tissues. Malignant tissues showed higher cytosolic and nuclear β-catenin expressions than benign and non-involved tissues. Within malignant tissues, β-catenin and cyclin D1 expressions were higher in the nucleus than cytosol. Cyclin D1 expression was higher in the cytosolic fractions of benign and non-involved than malignant tissues. Furthermore, in malignant tissues, tCho showed a positive correlation with the cytosolic and nuclear expression of β-catenin and cyclin D1 and also a correlation between nuclear expressions of both these proteins was seen. Higher cytosolic β-catenin expression was seen in progesterone receptor negative than positive patients. Results provide an evidence of correlation between non-invasive biomarker, tCho and the Wnt/β-catenin pathway. The findings explain the molecular mechanism of tCho elevation which may facilitate exploration of additional therapeutic targets for breast cancer. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-01459-z |