Loading…

Sulfonated magnetic spirulina nanobiomaterial as a novel and environmentally friendly catalyst for the synthesis of dihydroquinazolin-4(1H)-ones in aqueous medium

Spirulina algae is an excellent candidate for catalyst preparation due to its reactive functional groups, cost-effectiveness, widespread commercial accessibility, and biodegradability. In this study, magnetized Spirulina was used for the synthesis of dihydroquinazolin-4(1H)-ones (DHQZs) as catalyst....

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-01, Vol.14 (1), p.2296-15, Article 2296
Main Authors: Mashhadi, Elahe, Safaei-Ghomi, Javad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spirulina algae is an excellent candidate for catalyst preparation due to its reactive functional groups, cost-effectiveness, widespread commercial accessibility, and biodegradability. In this study, magnetized Spirulina was used for the synthesis of dihydroquinazolin-4(1H)-ones (DHQZs) as catalyst. Magnetized Spirulina was produced by CoFe 2 O 4 and sulfonation method using chlorosulfonic acid to create the catalyst [CoFe 2 O 4 -Sp-SO 3 H]. It was affirmed by various techniques, including Fourier transform infrared (FT-IR), Vibrating sample magnetometry (VSM), Powder X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), Thermogravimetric analysis (TGA), Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FE-SEM), and elemental mapping techniques. DHQZs synthesis was accomplished through a concise one-pot, three-component reaction involving a range of diverse aldehydes, isatoic anhydride, and primary aromatic amine, within an aqueous medium. The method offers several advantages, including using green conditions, the generation of several new 2-furan-quinazolinone derivatives, chromatography-free purification, short reaction times, appropriate yield of product (75–96%), and catalyst recyclability. The proposed catalyst and water as solvent demonstrated a strong synergistic effect, leading to the prosperous synthesis of various novel dihydroquinazolinones at 60 °C. These numerous benefits make our approach highly attractive for academic research and industrial applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-52749-2