Loading…

A Comprehensive Look at In Vitro Angiogenesis Image Analysis Software

One of the complex challenges faced presently by tissue engineering (TE) is the development of vascularized constructs that accurately mimic the extracellular matrix (ECM) of native tissue in which they are inserted to promote vessel growth and, consequently, wound healing and tissue regeneration. T...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2023-12, Vol.24 (24), p.17625
Main Authors: Pereira, Mariana, Pinto, Jéssica, Arteaga, Belén, Guerra, Ana, Jorge, Renato Natal, Monteiro, Fernando Jorge, Salgado, Christiane Laranjo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One of the complex challenges faced presently by tissue engineering (TE) is the development of vascularized constructs that accurately mimic the extracellular matrix (ECM) of native tissue in which they are inserted to promote vessel growth and, consequently, wound healing and tissue regeneration. TE technique is characterized by several stages, starting from the choice of cell culture and the more appropriate scaffold material that can adequately support and supply them with the necessary biological cues for microvessel development. The next step is to analyze the attained microvasculature, which is reliant on the available labeling and microscopy techniques to visualize the network, as well as metrics employed to characterize it. These are usually attained with the use of software, which has been cited in several works, although no clear standard procedure has been observed to promote the reproduction of the cell response analysis. The present review analyzes not only the various steps previously described in terms of the current standards for evaluation, but also surveys some of the available metrics and software used to quantify networks, along with the detection of analysis limitations and future improvements that could lead to considerable progress for angiogenesis evaluation and application in TE research.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms242417625