Loading…

Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses

High-throughput electron microscopy has started to reveal synaptic connectivity maps of single circuits and whole brain regions, for example, in the Drosophila olfactory system. However, efficacy, timing, and frequency tuning of synaptic vesicle release are also highly diversified across brain synap...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2018-05, Vol.23 (5), p.1259-1274
Main Authors: Fulterer, Andreas, Andlauer, Till F.M., Ender, Anatoli, Maglione, Marta, Eyring, Katherine, Woitkuhn, Jennifer, Lehmann, Martin, Matkovic-Rachid, Tanja, Geiger, Joerg R.P., Walter, Alexander M., Nagel, Katherine I., Sigrist, Stephan J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43
cites cdi_FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43
container_end_page 1274
container_issue 5
container_start_page 1259
container_title Cell reports (Cambridge)
container_volume 23
creator Fulterer, Andreas
Andlauer, Till F.M.
Ender, Anatoli
Maglione, Marta
Eyring, Katherine
Woitkuhn, Jennifer
Lehmann, Martin
Matkovic-Rachid, Tanja
Geiger, Joerg R.P.
Walter, Alexander M.
Nagel, Katherine I.
Sigrist, Stephan J.
description High-throughput electron microscopy has started to reveal synaptic connectivity maps of single circuits and whole brain regions, for example, in the Drosophila olfactory system. However, efficacy, timing, and frequency tuning of synaptic vesicle release are also highly diversified across brain synapses. These features critically depend on the nanometer-scale coupling distance between voltage-gated Ca2+ channels (VGCCs) and the synaptic vesicle release machinery. Combining light super resolution microscopy with in vivo electrophysiology, we show here that two orthogonal scaffold proteins (ELKS family Bruchpilot, BRP, and Syd-1) cluster-specific (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from VGCCs across synapses of the Drosophila olfactory system, resulting in different synapse-characteristic forms of short-term plasticity. Moreover, BRP/Unc13A versus Syd-1/Unc13B ratios were different between synapse types. Thus, variation in tightly versus loosely coupled scaffold protein/(M)Unc13 modules can tune synapse-type-specific release features, and “nanoscopic molecular fingerprints” might identify synapses with specific temporal features. [Display omitted] •Active zone scaffold proteins systematically differ between synapse types in Drosophila•BRP localizes Unc13A 30–40 nm closer to voltage-gated Ca2+ channels than Syd-1 Unc13B•BRP/Unc13A dominates at fast, depressing, Syd-1/Unc13B at slow, facilitating synapses Fulterer et al. demonstrates that the scaffold proteins Bruchpilot and Syd-1 cluster (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from voltage-gated Ca2+ channels in the Drosophila olfactory system. These scaffold/release factor “modules” varied significantly between different synapse types, thereby tuning release features toward depression or facilitation.
doi_str_mv 10.1016/j.celrep.2018.03.126
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f860d780eed74f568c5c7db9c0f022f6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S221112471830514X</els_id><doaj_id>oai_doaj_org_article_f860d780eed74f568c5c7db9c0f022f6</doaj_id><sourcerecordid>2034286586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43</originalsourceid><addsrcrecordid>eNp9UcFu1DAQjRCIVqV_gFCOXDb12I7tXJBKobRSJRBbLlwsxx4Xr7LxYicr7d_j7ZbSXvDF1syb9zzvVdVbIA0QEGerxuKQcNNQAqohrAEqXlTHlAIsgHL58sn7qDrNeUXKEQSg46-rI9pJ6Chnx9Xy3E5hi_XPOGK9tMb7OLj6W4oThrH-bqYQc307l-blPBZoHM1QfyoTKYdpVxubYs71x2QKerkbzSZjflO98mbIePpwn1Q_Lj_fXlwtbr5-ub44v1nYtmunhRNgkHqwnTUOKDLfE-klAezLNpxLT03PbG87NEq2wFsA1ykQfcuIQ85OqusDr4tmpTcprE3a6WiCvi_EdKdNmoIdUHsliJOKIDrJfSuUba10fWeJJ5R6Ubg-HLg2c79GZ3GckhmekT7vjOGXvotbLTgTiqpC8P6BIMXfM-ZJr0MuIQ1mxDhnTQnjVIlW7bX4AXpvXkL_KANE7-PVK32IV-_j1YTpYkgZe_f0i49Df8P8twMW07cBk8424GjRhYR2Kq6E_yv8AaGmuVE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034286586</pqid></control><display><type>article</type><title>Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Fulterer, Andreas ; Andlauer, Till F.M. ; Ender, Anatoli ; Maglione, Marta ; Eyring, Katherine ; Woitkuhn, Jennifer ; Lehmann, Martin ; Matkovic-Rachid, Tanja ; Geiger, Joerg R.P. ; Walter, Alexander M. ; Nagel, Katherine I. ; Sigrist, Stephan J.</creator><creatorcontrib>Fulterer, Andreas ; Andlauer, Till F.M. ; Ender, Anatoli ; Maglione, Marta ; Eyring, Katherine ; Woitkuhn, Jennifer ; Lehmann, Martin ; Matkovic-Rachid, Tanja ; Geiger, Joerg R.P. ; Walter, Alexander M. ; Nagel, Katherine I. ; Sigrist, Stephan J.</creatorcontrib><description>High-throughput electron microscopy has started to reveal synaptic connectivity maps of single circuits and whole brain regions, for example, in the Drosophila olfactory system. However, efficacy, timing, and frequency tuning of synaptic vesicle release are also highly diversified across brain synapses. These features critically depend on the nanometer-scale coupling distance between voltage-gated Ca2+ channels (VGCCs) and the synaptic vesicle release machinery. Combining light super resolution microscopy with in vivo electrophysiology, we show here that two orthogonal scaffold proteins (ELKS family Bruchpilot, BRP, and Syd-1) cluster-specific (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from VGCCs across synapses of the Drosophila olfactory system, resulting in different synapse-characteristic forms of short-term plasticity. Moreover, BRP/Unc13A versus Syd-1/Unc13B ratios were different between synapse types. Thus, variation in tightly versus loosely coupled scaffold protein/(M)Unc13 modules can tune synapse-type-specific release features, and “nanoscopic molecular fingerprints” might identify synapses with specific temporal features. [Display omitted] •Active zone scaffold proteins systematically differ between synapse types in Drosophila•BRP localizes Unc13A 30–40 nm closer to voltage-gated Ca2+ channels than Syd-1 Unc13B•BRP/Unc13A dominates at fast, depressing, Syd-1/Unc13B at slow, facilitating synapses Fulterer et al. demonstrates that the scaffold proteins Bruchpilot and Syd-1 cluster (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from voltage-gated Ca2+ channels in the Drosophila olfactory system. These scaffold/release factor “modules” varied significantly between different synapse types, thereby tuning release features toward depression or facilitation.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2018.03.126</identifier><identifier>PMID: 29719243</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>active zone ; Animals ; Bruchpilot ; Drosophila ; Drosophila melanogaster ; Drosophila Proteins - metabolism ; GTPase-Activating Proteins - metabolism ; Membrane Proteins - metabolism ; munc13 ; Mushroom Bodies - metabolism ; Mushroom Bodies - ultrastructure ; nanoscopy ; Nerve Tissue Proteins - metabolism ; neurotransmitter release ; olfactory system ; positional priming ; Syd-1 ; synapse diversity ; synapse physiology ; Synaptic Vesicles - metabolism ; Synaptic Vesicles - ultrastructure</subject><ispartof>Cell reports (Cambridge), 2018-05, Vol.23 (5), p.1259-1274</ispartof><rights>2018 The Author(s)</rights><rights>Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43</citedby><cites>FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29719243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fulterer, Andreas</creatorcontrib><creatorcontrib>Andlauer, Till F.M.</creatorcontrib><creatorcontrib>Ender, Anatoli</creatorcontrib><creatorcontrib>Maglione, Marta</creatorcontrib><creatorcontrib>Eyring, Katherine</creatorcontrib><creatorcontrib>Woitkuhn, Jennifer</creatorcontrib><creatorcontrib>Lehmann, Martin</creatorcontrib><creatorcontrib>Matkovic-Rachid, Tanja</creatorcontrib><creatorcontrib>Geiger, Joerg R.P.</creatorcontrib><creatorcontrib>Walter, Alexander M.</creatorcontrib><creatorcontrib>Nagel, Katherine I.</creatorcontrib><creatorcontrib>Sigrist, Stephan J.</creatorcontrib><title>Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>High-throughput electron microscopy has started to reveal synaptic connectivity maps of single circuits and whole brain regions, for example, in the Drosophila olfactory system. However, efficacy, timing, and frequency tuning of synaptic vesicle release are also highly diversified across brain synapses. These features critically depend on the nanometer-scale coupling distance between voltage-gated Ca2+ channels (VGCCs) and the synaptic vesicle release machinery. Combining light super resolution microscopy with in vivo electrophysiology, we show here that two orthogonal scaffold proteins (ELKS family Bruchpilot, BRP, and Syd-1) cluster-specific (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from VGCCs across synapses of the Drosophila olfactory system, resulting in different synapse-characteristic forms of short-term plasticity. Moreover, BRP/Unc13A versus Syd-1/Unc13B ratios were different between synapse types. Thus, variation in tightly versus loosely coupled scaffold protein/(M)Unc13 modules can tune synapse-type-specific release features, and “nanoscopic molecular fingerprints” might identify synapses with specific temporal features. [Display omitted] •Active zone scaffold proteins systematically differ between synapse types in Drosophila•BRP localizes Unc13A 30–40 nm closer to voltage-gated Ca2+ channels than Syd-1 Unc13B•BRP/Unc13A dominates at fast, depressing, Syd-1/Unc13B at slow, facilitating synapses Fulterer et al. demonstrates that the scaffold proteins Bruchpilot and Syd-1 cluster (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from voltage-gated Ca2+ channels in the Drosophila olfactory system. These scaffold/release factor “modules” varied significantly between different synapse types, thereby tuning release features toward depression or facilitation.</description><subject>active zone</subject><subject>Animals</subject><subject>Bruchpilot</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - metabolism</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>munc13</subject><subject>Mushroom Bodies - metabolism</subject><subject>Mushroom Bodies - ultrastructure</subject><subject>nanoscopy</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>neurotransmitter release</subject><subject>olfactory system</subject><subject>positional priming</subject><subject>Syd-1</subject><subject>synapse diversity</subject><subject>synapse physiology</subject><subject>Synaptic Vesicles - metabolism</subject><subject>Synaptic Vesicles - ultrastructure</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UcFu1DAQjRCIVqV_gFCOXDb12I7tXJBKobRSJRBbLlwsxx4Xr7LxYicr7d_j7ZbSXvDF1syb9zzvVdVbIA0QEGerxuKQcNNQAqohrAEqXlTHlAIsgHL58sn7qDrNeUXKEQSg46-rI9pJ6Chnx9Xy3E5hi_XPOGK9tMb7OLj6W4oThrH-bqYQc307l-blPBZoHM1QfyoTKYdpVxubYs71x2QKerkbzSZjflO98mbIePpwn1Q_Lj_fXlwtbr5-ub44v1nYtmunhRNgkHqwnTUOKDLfE-klAezLNpxLT03PbG87NEq2wFsA1ykQfcuIQ85OqusDr4tmpTcprE3a6WiCvi_EdKdNmoIdUHsliJOKIDrJfSuUba10fWeJJ5R6Ubg-HLg2c79GZ3GckhmekT7vjOGXvotbLTgTiqpC8P6BIMXfM-ZJr0MuIQ1mxDhnTQnjVIlW7bX4AXpvXkL_KANE7-PVK32IV-_j1YTpYkgZe_f0i49Df8P8twMW07cBk8424GjRhYR2Kq6E_yv8AaGmuVE</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Fulterer, Andreas</creator><creator>Andlauer, Till F.M.</creator><creator>Ender, Anatoli</creator><creator>Maglione, Marta</creator><creator>Eyring, Katherine</creator><creator>Woitkuhn, Jennifer</creator><creator>Lehmann, Martin</creator><creator>Matkovic-Rachid, Tanja</creator><creator>Geiger, Joerg R.P.</creator><creator>Walter, Alexander M.</creator><creator>Nagel, Katherine I.</creator><creator>Sigrist, Stephan J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180501</creationdate><title>Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses</title><author>Fulterer, Andreas ; Andlauer, Till F.M. ; Ender, Anatoli ; Maglione, Marta ; Eyring, Katherine ; Woitkuhn, Jennifer ; Lehmann, Martin ; Matkovic-Rachid, Tanja ; Geiger, Joerg R.P. ; Walter, Alexander M. ; Nagel, Katherine I. ; Sigrist, Stephan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>active zone</topic><topic>Animals</topic><topic>Bruchpilot</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - metabolism</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>munc13</topic><topic>Mushroom Bodies - metabolism</topic><topic>Mushroom Bodies - ultrastructure</topic><topic>nanoscopy</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>neurotransmitter release</topic><topic>olfactory system</topic><topic>positional priming</topic><topic>Syd-1</topic><topic>synapse diversity</topic><topic>synapse physiology</topic><topic>Synaptic Vesicles - metabolism</topic><topic>Synaptic Vesicles - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fulterer, Andreas</creatorcontrib><creatorcontrib>Andlauer, Till F.M.</creatorcontrib><creatorcontrib>Ender, Anatoli</creatorcontrib><creatorcontrib>Maglione, Marta</creatorcontrib><creatorcontrib>Eyring, Katherine</creatorcontrib><creatorcontrib>Woitkuhn, Jennifer</creatorcontrib><creatorcontrib>Lehmann, Martin</creatorcontrib><creatorcontrib>Matkovic-Rachid, Tanja</creatorcontrib><creatorcontrib>Geiger, Joerg R.P.</creatorcontrib><creatorcontrib>Walter, Alexander M.</creatorcontrib><creatorcontrib>Nagel, Katherine I.</creatorcontrib><creatorcontrib>Sigrist, Stephan J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fulterer, Andreas</au><au>Andlauer, Till F.M.</au><au>Ender, Anatoli</au><au>Maglione, Marta</au><au>Eyring, Katherine</au><au>Woitkuhn, Jennifer</au><au>Lehmann, Martin</au><au>Matkovic-Rachid, Tanja</au><au>Geiger, Joerg R.P.</au><au>Walter, Alexander M.</au><au>Nagel, Katherine I.</au><au>Sigrist, Stephan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>23</volume><issue>5</issue><spage>1259</spage><epage>1274</epage><pages>1259-1274</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>High-throughput electron microscopy has started to reveal synaptic connectivity maps of single circuits and whole brain regions, for example, in the Drosophila olfactory system. However, efficacy, timing, and frequency tuning of synaptic vesicle release are also highly diversified across brain synapses. These features critically depend on the nanometer-scale coupling distance between voltage-gated Ca2+ channels (VGCCs) and the synaptic vesicle release machinery. Combining light super resolution microscopy with in vivo electrophysiology, we show here that two orthogonal scaffold proteins (ELKS family Bruchpilot, BRP, and Syd-1) cluster-specific (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from VGCCs across synapses of the Drosophila olfactory system, resulting in different synapse-characteristic forms of short-term plasticity. Moreover, BRP/Unc13A versus Syd-1/Unc13B ratios were different between synapse types. Thus, variation in tightly versus loosely coupled scaffold protein/(M)Unc13 modules can tune synapse-type-specific release features, and “nanoscopic molecular fingerprints” might identify synapses with specific temporal features. [Display omitted] •Active zone scaffold proteins systematically differ between synapse types in Drosophila•BRP localizes Unc13A 30–40 nm closer to voltage-gated Ca2+ channels than Syd-1 Unc13B•BRP/Unc13A dominates at fast, depressing, Syd-1/Unc13B at slow, facilitating synapses Fulterer et al. demonstrates that the scaffold proteins Bruchpilot and Syd-1 cluster (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from voltage-gated Ca2+ channels in the Drosophila olfactory system. These scaffold/release factor “modules” varied significantly between different synapse types, thereby tuning release features toward depression or facilitation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29719243</pmid><doi>10.1016/j.celrep.2018.03.126</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2018-05, Vol.23 (5), p.1259-1274
issn 2211-1247
2211-1247
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f860d780eed74f568c5c7db9c0f022f6
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects active zone
Animals
Bruchpilot
Drosophila
Drosophila melanogaster
Drosophila Proteins - metabolism
GTPase-Activating Proteins - metabolism
Membrane Proteins - metabolism
munc13
Mushroom Bodies - metabolism
Mushroom Bodies - ultrastructure
nanoscopy
Nerve Tissue Proteins - metabolism
neurotransmitter release
olfactory system
positional priming
Syd-1
synapse diversity
synapse physiology
Synaptic Vesicles - metabolism
Synaptic Vesicles - ultrastructure
title Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Zone%20Scaffold%20Protein%20Ratios%20Tune%20Functional%20Diversity%20across%20Brain%20Synapses&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Fulterer,%20Andreas&rft.date=2018-05-01&rft.volume=23&rft.issue=5&rft.spage=1259&rft.epage=1274&rft.pages=1259-1274&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2018.03.126&rft_dat=%3Cproquest_doaj_%3E2034286586%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2034286586&rft_id=info:pmid/29719243&rfr_iscdi=true