Loading…
Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses
High-throughput electron microscopy has started to reveal synaptic connectivity maps of single circuits and whole brain regions, for example, in the Drosophila olfactory system. However, efficacy, timing, and frequency tuning of synaptic vesicle release are also highly diversified across brain synap...
Saved in:
Published in: | Cell reports (Cambridge) 2018-05, Vol.23 (5), p.1259-1274 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43 |
---|---|
cites | cdi_FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43 |
container_end_page | 1274 |
container_issue | 5 |
container_start_page | 1259 |
container_title | Cell reports (Cambridge) |
container_volume | 23 |
creator | Fulterer, Andreas Andlauer, Till F.M. Ender, Anatoli Maglione, Marta Eyring, Katherine Woitkuhn, Jennifer Lehmann, Martin Matkovic-Rachid, Tanja Geiger, Joerg R.P. Walter, Alexander M. Nagel, Katherine I. Sigrist, Stephan J. |
description | High-throughput electron microscopy has started to reveal synaptic connectivity maps of single circuits and whole brain regions, for example, in the Drosophila olfactory system. However, efficacy, timing, and frequency tuning of synaptic vesicle release are also highly diversified across brain synapses. These features critically depend on the nanometer-scale coupling distance between voltage-gated Ca2+ channels (VGCCs) and the synaptic vesicle release machinery. Combining light super resolution microscopy with in vivo electrophysiology, we show here that two orthogonal scaffold proteins (ELKS family Bruchpilot, BRP, and Syd-1) cluster-specific (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from VGCCs across synapses of the Drosophila olfactory system, resulting in different synapse-characteristic forms of short-term plasticity. Moreover, BRP/Unc13A versus Syd-1/Unc13B ratios were different between synapse types. Thus, variation in tightly versus loosely coupled scaffold protein/(M)Unc13 modules can tune synapse-type-specific release features, and “nanoscopic molecular fingerprints” might identify synapses with specific temporal features.
[Display omitted]
•Active zone scaffold proteins systematically differ between synapse types in Drosophila•BRP localizes Unc13A 30–40 nm closer to voltage-gated Ca2+ channels than Syd-1 Unc13B•BRP/Unc13A dominates at fast, depressing, Syd-1/Unc13B at slow, facilitating synapses
Fulterer et al. demonstrates that the scaffold proteins Bruchpilot and Syd-1 cluster (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from voltage-gated Ca2+ channels in the Drosophila olfactory system. These scaffold/release factor “modules” varied significantly between different synapse types, thereby tuning release features toward depression or facilitation. |
doi_str_mv | 10.1016/j.celrep.2018.03.126 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f860d780eed74f568c5c7db9c0f022f6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S221112471830514X</els_id><doaj_id>oai_doaj_org_article_f860d780eed74f568c5c7db9c0f022f6</doaj_id><sourcerecordid>2034286586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43</originalsourceid><addsrcrecordid>eNp9UcFu1DAQjRCIVqV_gFCOXDb12I7tXJBKobRSJRBbLlwsxx4Xr7LxYicr7d_j7ZbSXvDF1syb9zzvVdVbIA0QEGerxuKQcNNQAqohrAEqXlTHlAIsgHL58sn7qDrNeUXKEQSg46-rI9pJ6Chnx9Xy3E5hi_XPOGK9tMb7OLj6W4oThrH-bqYQc307l-blPBZoHM1QfyoTKYdpVxubYs71x2QKerkbzSZjflO98mbIePpwn1Q_Lj_fXlwtbr5-ub44v1nYtmunhRNgkHqwnTUOKDLfE-klAezLNpxLT03PbG87NEq2wFsA1ykQfcuIQ85OqusDr4tmpTcprE3a6WiCvi_EdKdNmoIdUHsliJOKIDrJfSuUba10fWeJJ5R6Ubg-HLg2c79GZ3GckhmekT7vjOGXvotbLTgTiqpC8P6BIMXfM-ZJr0MuIQ1mxDhnTQnjVIlW7bX4AXpvXkL_KANE7-PVK32IV-_j1YTpYkgZe_f0i49Df8P8twMW07cBk8424GjRhYR2Kq6E_yv8AaGmuVE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034286586</pqid></control><display><type>article</type><title>Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Fulterer, Andreas ; Andlauer, Till F.M. ; Ender, Anatoli ; Maglione, Marta ; Eyring, Katherine ; Woitkuhn, Jennifer ; Lehmann, Martin ; Matkovic-Rachid, Tanja ; Geiger, Joerg R.P. ; Walter, Alexander M. ; Nagel, Katherine I. ; Sigrist, Stephan J.</creator><creatorcontrib>Fulterer, Andreas ; Andlauer, Till F.M. ; Ender, Anatoli ; Maglione, Marta ; Eyring, Katherine ; Woitkuhn, Jennifer ; Lehmann, Martin ; Matkovic-Rachid, Tanja ; Geiger, Joerg R.P. ; Walter, Alexander M. ; Nagel, Katherine I. ; Sigrist, Stephan J.</creatorcontrib><description>High-throughput electron microscopy has started to reveal synaptic connectivity maps of single circuits and whole brain regions, for example, in the Drosophila olfactory system. However, efficacy, timing, and frequency tuning of synaptic vesicle release are also highly diversified across brain synapses. These features critically depend on the nanometer-scale coupling distance between voltage-gated Ca2+ channels (VGCCs) and the synaptic vesicle release machinery. Combining light super resolution microscopy with in vivo electrophysiology, we show here that two orthogonal scaffold proteins (ELKS family Bruchpilot, BRP, and Syd-1) cluster-specific (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from VGCCs across synapses of the Drosophila olfactory system, resulting in different synapse-characteristic forms of short-term plasticity. Moreover, BRP/Unc13A versus Syd-1/Unc13B ratios were different between synapse types. Thus, variation in tightly versus loosely coupled scaffold protein/(M)Unc13 modules can tune synapse-type-specific release features, and “nanoscopic molecular fingerprints” might identify synapses with specific temporal features.
[Display omitted]
•Active zone scaffold proteins systematically differ between synapse types in Drosophila•BRP localizes Unc13A 30–40 nm closer to voltage-gated Ca2+ channels than Syd-1 Unc13B•BRP/Unc13A dominates at fast, depressing, Syd-1/Unc13B at slow, facilitating synapses
Fulterer et al. demonstrates that the scaffold proteins Bruchpilot and Syd-1 cluster (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from voltage-gated Ca2+ channels in the Drosophila olfactory system. These scaffold/release factor “modules” varied significantly between different synapse types, thereby tuning release features toward depression or facilitation.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2018.03.126</identifier><identifier>PMID: 29719243</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>active zone ; Animals ; Bruchpilot ; Drosophila ; Drosophila melanogaster ; Drosophila Proteins - metabolism ; GTPase-Activating Proteins - metabolism ; Membrane Proteins - metabolism ; munc13 ; Mushroom Bodies - metabolism ; Mushroom Bodies - ultrastructure ; nanoscopy ; Nerve Tissue Proteins - metabolism ; neurotransmitter release ; olfactory system ; positional priming ; Syd-1 ; synapse diversity ; synapse physiology ; Synaptic Vesicles - metabolism ; Synaptic Vesicles - ultrastructure</subject><ispartof>Cell reports (Cambridge), 2018-05, Vol.23 (5), p.1259-1274</ispartof><rights>2018 The Author(s)</rights><rights>Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43</citedby><cites>FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29719243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fulterer, Andreas</creatorcontrib><creatorcontrib>Andlauer, Till F.M.</creatorcontrib><creatorcontrib>Ender, Anatoli</creatorcontrib><creatorcontrib>Maglione, Marta</creatorcontrib><creatorcontrib>Eyring, Katherine</creatorcontrib><creatorcontrib>Woitkuhn, Jennifer</creatorcontrib><creatorcontrib>Lehmann, Martin</creatorcontrib><creatorcontrib>Matkovic-Rachid, Tanja</creatorcontrib><creatorcontrib>Geiger, Joerg R.P.</creatorcontrib><creatorcontrib>Walter, Alexander M.</creatorcontrib><creatorcontrib>Nagel, Katherine I.</creatorcontrib><creatorcontrib>Sigrist, Stephan J.</creatorcontrib><title>Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>High-throughput electron microscopy has started to reveal synaptic connectivity maps of single circuits and whole brain regions, for example, in the Drosophila olfactory system. However, efficacy, timing, and frequency tuning of synaptic vesicle release are also highly diversified across brain synapses. These features critically depend on the nanometer-scale coupling distance between voltage-gated Ca2+ channels (VGCCs) and the synaptic vesicle release machinery. Combining light super resolution microscopy with in vivo electrophysiology, we show here that two orthogonal scaffold proteins (ELKS family Bruchpilot, BRP, and Syd-1) cluster-specific (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from VGCCs across synapses of the Drosophila olfactory system, resulting in different synapse-characteristic forms of short-term plasticity. Moreover, BRP/Unc13A versus Syd-1/Unc13B ratios were different between synapse types. Thus, variation in tightly versus loosely coupled scaffold protein/(M)Unc13 modules can tune synapse-type-specific release features, and “nanoscopic molecular fingerprints” might identify synapses with specific temporal features.
[Display omitted]
•Active zone scaffold proteins systematically differ between synapse types in Drosophila•BRP localizes Unc13A 30–40 nm closer to voltage-gated Ca2+ channels than Syd-1 Unc13B•BRP/Unc13A dominates at fast, depressing, Syd-1/Unc13B at slow, facilitating synapses
Fulterer et al. demonstrates that the scaffold proteins Bruchpilot and Syd-1 cluster (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from voltage-gated Ca2+ channels in the Drosophila olfactory system. These scaffold/release factor “modules” varied significantly between different synapse types, thereby tuning release features toward depression or facilitation.</description><subject>active zone</subject><subject>Animals</subject><subject>Bruchpilot</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - metabolism</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>munc13</subject><subject>Mushroom Bodies - metabolism</subject><subject>Mushroom Bodies - ultrastructure</subject><subject>nanoscopy</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>neurotransmitter release</subject><subject>olfactory system</subject><subject>positional priming</subject><subject>Syd-1</subject><subject>synapse diversity</subject><subject>synapse physiology</subject><subject>Synaptic Vesicles - metabolism</subject><subject>Synaptic Vesicles - ultrastructure</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UcFu1DAQjRCIVqV_gFCOXDb12I7tXJBKobRSJRBbLlwsxx4Xr7LxYicr7d_j7ZbSXvDF1syb9zzvVdVbIA0QEGerxuKQcNNQAqohrAEqXlTHlAIsgHL58sn7qDrNeUXKEQSg46-rI9pJ6Chnx9Xy3E5hi_XPOGK9tMb7OLj6W4oThrH-bqYQc307l-blPBZoHM1QfyoTKYdpVxubYs71x2QKerkbzSZjflO98mbIePpwn1Q_Lj_fXlwtbr5-ub44v1nYtmunhRNgkHqwnTUOKDLfE-klAezLNpxLT03PbG87NEq2wFsA1ykQfcuIQ85OqusDr4tmpTcprE3a6WiCvi_EdKdNmoIdUHsliJOKIDrJfSuUba10fWeJJ5R6Ubg-HLg2c79GZ3GckhmekT7vjOGXvotbLTgTiqpC8P6BIMXfM-ZJr0MuIQ1mxDhnTQnjVIlW7bX4AXpvXkL_KANE7-PVK32IV-_j1YTpYkgZe_f0i49Df8P8twMW07cBk8424GjRhYR2Kq6E_yv8AaGmuVE</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Fulterer, Andreas</creator><creator>Andlauer, Till F.M.</creator><creator>Ender, Anatoli</creator><creator>Maglione, Marta</creator><creator>Eyring, Katherine</creator><creator>Woitkuhn, Jennifer</creator><creator>Lehmann, Martin</creator><creator>Matkovic-Rachid, Tanja</creator><creator>Geiger, Joerg R.P.</creator><creator>Walter, Alexander M.</creator><creator>Nagel, Katherine I.</creator><creator>Sigrist, Stephan J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180501</creationdate><title>Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses</title><author>Fulterer, Andreas ; Andlauer, Till F.M. ; Ender, Anatoli ; Maglione, Marta ; Eyring, Katherine ; Woitkuhn, Jennifer ; Lehmann, Martin ; Matkovic-Rachid, Tanja ; Geiger, Joerg R.P. ; Walter, Alexander M. ; Nagel, Katherine I. ; Sigrist, Stephan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>active zone</topic><topic>Animals</topic><topic>Bruchpilot</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - metabolism</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>munc13</topic><topic>Mushroom Bodies - metabolism</topic><topic>Mushroom Bodies - ultrastructure</topic><topic>nanoscopy</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>neurotransmitter release</topic><topic>olfactory system</topic><topic>positional priming</topic><topic>Syd-1</topic><topic>synapse diversity</topic><topic>synapse physiology</topic><topic>Synaptic Vesicles - metabolism</topic><topic>Synaptic Vesicles - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fulterer, Andreas</creatorcontrib><creatorcontrib>Andlauer, Till F.M.</creatorcontrib><creatorcontrib>Ender, Anatoli</creatorcontrib><creatorcontrib>Maglione, Marta</creatorcontrib><creatorcontrib>Eyring, Katherine</creatorcontrib><creatorcontrib>Woitkuhn, Jennifer</creatorcontrib><creatorcontrib>Lehmann, Martin</creatorcontrib><creatorcontrib>Matkovic-Rachid, Tanja</creatorcontrib><creatorcontrib>Geiger, Joerg R.P.</creatorcontrib><creatorcontrib>Walter, Alexander M.</creatorcontrib><creatorcontrib>Nagel, Katherine I.</creatorcontrib><creatorcontrib>Sigrist, Stephan J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fulterer, Andreas</au><au>Andlauer, Till F.M.</au><au>Ender, Anatoli</au><au>Maglione, Marta</au><au>Eyring, Katherine</au><au>Woitkuhn, Jennifer</au><au>Lehmann, Martin</au><au>Matkovic-Rachid, Tanja</au><au>Geiger, Joerg R.P.</au><au>Walter, Alexander M.</au><au>Nagel, Katherine I.</au><au>Sigrist, Stephan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>23</volume><issue>5</issue><spage>1259</spage><epage>1274</epage><pages>1259-1274</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>High-throughput electron microscopy has started to reveal synaptic connectivity maps of single circuits and whole brain regions, for example, in the Drosophila olfactory system. However, efficacy, timing, and frequency tuning of synaptic vesicle release are also highly diversified across brain synapses. These features critically depend on the nanometer-scale coupling distance between voltage-gated Ca2+ channels (VGCCs) and the synaptic vesicle release machinery. Combining light super resolution microscopy with in vivo electrophysiology, we show here that two orthogonal scaffold proteins (ELKS family Bruchpilot, BRP, and Syd-1) cluster-specific (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from VGCCs across synapses of the Drosophila olfactory system, resulting in different synapse-characteristic forms of short-term plasticity. Moreover, BRP/Unc13A versus Syd-1/Unc13B ratios were different between synapse types. Thus, variation in tightly versus loosely coupled scaffold protein/(M)Unc13 modules can tune synapse-type-specific release features, and “nanoscopic molecular fingerprints” might identify synapses with specific temporal features.
[Display omitted]
•Active zone scaffold proteins systematically differ between synapse types in Drosophila•BRP localizes Unc13A 30–40 nm closer to voltage-gated Ca2+ channels than Syd-1 Unc13B•BRP/Unc13A dominates at fast, depressing, Syd-1/Unc13B at slow, facilitating synapses
Fulterer et al. demonstrates that the scaffold proteins Bruchpilot and Syd-1 cluster (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from voltage-gated Ca2+ channels in the Drosophila olfactory system. These scaffold/release factor “modules” varied significantly between different synapse types, thereby tuning release features toward depression or facilitation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29719243</pmid><doi>10.1016/j.celrep.2018.03.126</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2018-05, Vol.23 (5), p.1259-1274 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f860d780eed74f568c5c7db9c0f022f6 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | active zone Animals Bruchpilot Drosophila Drosophila melanogaster Drosophila Proteins - metabolism GTPase-Activating Proteins - metabolism Membrane Proteins - metabolism munc13 Mushroom Bodies - metabolism Mushroom Bodies - ultrastructure nanoscopy Nerve Tissue Proteins - metabolism neurotransmitter release olfactory system positional priming Syd-1 synapse diversity synapse physiology Synaptic Vesicles - metabolism Synaptic Vesicles - ultrastructure |
title | Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Zone%20Scaffold%20Protein%20Ratios%20Tune%20Functional%20Diversity%20across%20Brain%20Synapses&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Fulterer,%20Andreas&rft.date=2018-05-01&rft.volume=23&rft.issue=5&rft.spage=1259&rft.epage=1274&rft.pages=1259-1274&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2018.03.126&rft_dat=%3Cproquest_doaj_%3E2034286586%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c595t-d61ae2f1c9cad12e3fb07f701eb126447f2ab3cbc9ea87514511d9816b530de43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2034286586&rft_id=info:pmid/29719243&rfr_iscdi=true |