Loading…

Effectiveness of a low-intensity static magnetic field in accelerating upper canine retraction: a randomized controlled clinical trial

Neodymium-iron-boron magnets have been suggested as a contemporary method for accelerating the process of orthodontic tooth movement (OTM). A limited number of clinical trials evaluated their effectiveness in accelerating OTM which is desirable for both orthodontists and patients. The present study...

Full description

Saved in:
Bibliographic Details
Published in:BMC oral health 2024-04, Vol.24 (1), p.424-424, Article 424
Main Authors: Alqaisi, Nataly N, Haddad, Rania A, Amasha, Hani M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neodymium-iron-boron magnets have been suggested as a contemporary method for accelerating the process of orthodontic tooth movement (OTM). A limited number of clinical trials evaluated their effectiveness in accelerating OTM which is desirable for both orthodontists and patients. The present study aimed to investigate the effectiveness of a low-intensity static magnetic field (SMF) in accelerating upper canine retraction movement. Seventeen patients (mean age 20.76 ± 2.9 years) with their orthodontic treatment decision to extract the upper and lower first premolars due to bimaxillary protrusion malocclusion were included in this split-mouth study. Canine retraction was performed using Nickel-titanium (Ni-Ti) closed-coil springs (150 g of force on each side). The experimental side received SMF via an auxiliary wire that carried 4-neodymium iron-born magnets with an air gap of 2 mm between the magnets to produce a magnetic field density of 414 mT in the region corresponding to the lateral ligament of the upper canine. To determine the rate of upper canine retraction and upper molar drift, alginate impressions were taken once a month to create plaster casts, which were analyzed digitally via a three-dimensional method. The rate of upper canine retraction was significantly greater (P  0.05). A low-intensity static magnetic field was effective at accelerating upper canine retraction. The difference between the two sides was statistically significant but may not be clinically significant. The SMF did not affect upper molar drift during the upper canine retraction phase. The trial was retrospectively registered at the ISRCTN registry ( ISRCTN59092624 ) (31/05/2022).
ISSN:1472-6831
1472-6831
DOI:10.1186/s12903-024-04212-x