Loading…

Molecular Design and Mechanism Analysis of Phthalic Acid Ester Substitutes: Improved Biodegradability in Processes of Sewage Treatment and Soil Remediation

Phthalic acid esters (PAEs) have the characteristics of environmental persistence. Therefore, improving the biodegradability of PAEs is the key to reducing the extent of ecological harm realized. Firstly, the scoring function values of PAEs docking with various degrading enzymes in sewage treatment...

Full description

Saved in:
Bibliographic Details
Published in:Toxics (Basel) 2022-12, Vol.10 (12), p.783
Main Authors: Sun, Shuhai, Zuo, Qilin, Du, Meijin, Li, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phthalic acid esters (PAEs) have the characteristics of environmental persistence. Therefore, improving the biodegradability of PAEs is the key to reducing the extent of ecological harm realized. Firstly, the scoring function values of PAEs docking with various degrading enzymes in sewage treatment were calculated. Based on this, a 3D-quantitative structure-activity relationship (3D-QSAR) model for PAE biodegradability was built, and 38 PAE substitutes were created. By predicting the endocrine-disrupting toxicity and functions of PAE substitutes, two types of PAE substitutes that are easily degraded by microorganisms, have low toxicity, and remain functional were successfully screened. Meanwhile, the differences in the mechanism of molecular degradation difference before and after PAE modification were analyzed based on the distribution characteristics of amino acid residues in the molecular docking complex. Finally, the photodegradability and microbial degradability of the PAE substitutes in the soil environment was evaluated. From the 3D-QSAR model design perspective, the modification mechanism of PAE substitutes suitable for sewage treatment and soil environment degradation was analyzed. We aim to improve the biodegradability of PAEs at the source and provide theoretical support for alleviating the environmental hazards of using PAEs.
ISSN:2305-6304
2305-6304
DOI:10.3390/toxics10120783