Loading…
Hyper-Redundant Manipulator Capable of Adjusting Its Non-Uniform Curvature with Discrete Stiffness Distribution
Hyper-redundant manipulators are widely used in minimally invasive surgery because they can navigate through narrow passages in passive compliance with the human body. Although their stability and dexterity have been significantly improved over the years, we need manipulators that can bend with appr...
Saved in:
Published in: | Applied sciences 2022-01, Vol.12 (1), p.482 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hyper-redundant manipulators are widely used in minimally invasive surgery because they can navigate through narrow passages in passive compliance with the human body. Although their stability and dexterity have been significantly improved over the years, we need manipulators that can bend with appropriate curvatures and adapt to complex environments. This paper proposes a design principle for a manipulator capable of adjusting its non-uniform curvature and predicting the bending shape. Rigid segments were serially stacked, and elastic fixtures in the form of flat springs were arranged between hinged-slide joint segments. A manipulator with a diameter of 4.5 mm and a length of 28 mm had been fabricated. A model was established to predict the bending shape through minimum potential energy theory, kinematics, and measured stiffnesses of the flat springs. A comparison of the simulation and experimental results indicated an average position error of 3.82% of the endpoints when compared to the total length. With this modification, the manipulator is expected to be widely used in various fields such as small endoscope systems and single-port robot systems. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app12010482 |