Loading…
TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks
The growing interest in the use of algorithms-based machine learning for predictive tasks has generated a large and diverse development of algorithms. However, it is widely known that not all of these algorithms are adapted to efficient solutions in certain tidy data format datasets. For this reason...
Saved in:
Published in: | SoftwareX 2023-05, Vol.22, p.101391, Article 101391 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-b1e5302402d0e6b52ce188c195b754d145d79ea45722d7ad8ffe88c81a1148c93 |
container_end_page | |
container_issue | |
container_start_page | 101391 |
container_title | SoftwareX |
container_volume | 22 |
creator | Castillo-Cara, Manuel Talla-Chumpitaz, Reewos García-Castro, Raúl Orozco-Barbosa, Luis |
description | The growing interest in the use of algorithms-based machine learning for predictive tasks has generated a large and diverse development of algorithms. However, it is widely known that not all of these algorithms are adapted to efficient solutions in certain tidy data format datasets. For this reason, novel techniques are currently being developed to convert tidy data into images with the aim of using Convolutional Neural Networks (CNNs). TINTO offers the opportunity to convert tidy data into images through the representation of characteristic pixels by implementing two dimensional reduction algorithms: Principal Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding (t-SNE). Our proposal also includes a blurring technique, which adds more ordered information to the image and can improve the classification task in CNNs. |
doi_str_mv | 10.1016/j.softx.2023.101391 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f8b1035f798c40ad80aa3b8eaca6b491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352711023000870</els_id><doaj_id>oai_doaj_org_article_f8b1035f798c40ad80aa3b8eaca6b491</doaj_id><sourcerecordid>S2352711023000870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-b1e5302402d0e6b52ce188c195b754d145d79ea45722d7ad8ffe88c81a1148c93</originalsourceid><addsrcrecordid>eNp9kM1uFDEQhEcIJKKQJ-DiF5jF7Z8dDxIHtOFnpSi5LGerx9NePEzGyHYS8vZ4dxDixKm7y6pPrmqat8A3wGH7btrk6MuvjeBCnhTZw4vmQkgt2g6Av_xnf91c5TxxzkELo4W6aKbD_vZw957t4vJIqYTlyA5hfGbXWJCFpUQW7vFIzMfE3Iw5Bx8clhAX9hTKdyba63BPS64CzmdKnB_Ket3SQzqP8hTTj_ymeeVxznT1Z1423z5_Ouy-tjd3X_a7jzetk1tV2gFISy4UFyOn7aCFIzDGQa-HTqsRlB67nlDpToixw9F4T_XdAAIo43p52exX7hhxsj9TDZCebcRgz0JMR4s1qZvJejMAl9p3vXGKVxZHlIMhdLgdVA-VJVeWSzHnRP4vD7g9tW8ne27fntq3a_vV9WF1UY35GCjZ7AItjsaQyJX6j_Bf_29M6I8l</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks</title><source>ScienceDirect Journals</source><creator>Castillo-Cara, Manuel ; Talla-Chumpitaz, Reewos ; García-Castro, Raúl ; Orozco-Barbosa, Luis</creator><creatorcontrib>Castillo-Cara, Manuel ; Talla-Chumpitaz, Reewos ; García-Castro, Raúl ; Orozco-Barbosa, Luis</creatorcontrib><description>The growing interest in the use of algorithms-based machine learning for predictive tasks has generated a large and diverse development of algorithms. However, it is widely known that not all of these algorithms are adapted to efficient solutions in certain tidy data format datasets. For this reason, novel techniques are currently being developed to convert tidy data into images with the aim of using Convolutional Neural Networks (CNNs). TINTO offers the opportunity to convert tidy data into images through the representation of characteristic pixels by implementing two dimensional reduction algorithms: Principal Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding (t-SNE). Our proposal also includes a blurring technique, which adds more ordered information to the image and can improve the classification task in CNNs.</description><identifier>ISSN: 2352-7110</identifier><identifier>EISSN: 2352-7110</identifier><identifier>DOI: 10.1016/j.softx.2023.101391</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Convolutional neural networks ; Image blurring technique ; Image classification ; Image generation ; Tabular data into image ; Tabular to image conversion</subject><ispartof>SoftwareX, 2023-05, Vol.22, p.101391, Article 101391</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-b1e5302402d0e6b52ce188c195b754d145d79ea45722d7ad8ffe88c81a1148c93</cites><orcidid>0000-0002-2990-7090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352711023000870$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Castillo-Cara, Manuel</creatorcontrib><creatorcontrib>Talla-Chumpitaz, Reewos</creatorcontrib><creatorcontrib>García-Castro, Raúl</creatorcontrib><creatorcontrib>Orozco-Barbosa, Luis</creatorcontrib><title>TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks</title><title>SoftwareX</title><description>The growing interest in the use of algorithms-based machine learning for predictive tasks has generated a large and diverse development of algorithms. However, it is widely known that not all of these algorithms are adapted to efficient solutions in certain tidy data format datasets. For this reason, novel techniques are currently being developed to convert tidy data into images with the aim of using Convolutional Neural Networks (CNNs). TINTO offers the opportunity to convert tidy data into images through the representation of characteristic pixels by implementing two dimensional reduction algorithms: Principal Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding (t-SNE). Our proposal also includes a blurring technique, which adds more ordered information to the image and can improve the classification task in CNNs.</description><subject>Convolutional neural networks</subject><subject>Image blurring technique</subject><subject>Image classification</subject><subject>Image generation</subject><subject>Tabular data into image</subject><subject>Tabular to image conversion</subject><issn>2352-7110</issn><issn>2352-7110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kM1uFDEQhEcIJKKQJ-DiF5jF7Z8dDxIHtOFnpSi5LGerx9NePEzGyHYS8vZ4dxDixKm7y6pPrmqat8A3wGH7btrk6MuvjeBCnhTZw4vmQkgt2g6Av_xnf91c5TxxzkELo4W6aKbD_vZw957t4vJIqYTlyA5hfGbXWJCFpUQW7vFIzMfE3Iw5Bx8clhAX9hTKdyba63BPS64CzmdKnB_Ket3SQzqP8hTTj_ymeeVxznT1Z1423z5_Ouy-tjd3X_a7jzetk1tV2gFISy4UFyOn7aCFIzDGQa-HTqsRlB67nlDpToixw9F4T_XdAAIo43p52exX7hhxsj9TDZCebcRgz0JMR4s1qZvJejMAl9p3vXGKVxZHlIMhdLgdVA-VJVeWSzHnRP4vD7g9tW8ne27fntq3a_vV9WF1UY35GCjZ7AItjsaQyJX6j_Bf_29M6I8l</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Castillo-Cara, Manuel</creator><creator>Talla-Chumpitaz, Reewos</creator><creator>García-Castro, Raúl</creator><creator>Orozco-Barbosa, Luis</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2990-7090</orcidid></search><sort><creationdate>202305</creationdate><title>TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks</title><author>Castillo-Cara, Manuel ; Talla-Chumpitaz, Reewos ; García-Castro, Raúl ; Orozco-Barbosa, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-b1e5302402d0e6b52ce188c195b754d145d79ea45722d7ad8ffe88c81a1148c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convolutional neural networks</topic><topic>Image blurring technique</topic><topic>Image classification</topic><topic>Image generation</topic><topic>Tabular data into image</topic><topic>Tabular to image conversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo-Cara, Manuel</creatorcontrib><creatorcontrib>Talla-Chumpitaz, Reewos</creatorcontrib><creatorcontrib>García-Castro, Raúl</creatorcontrib><creatorcontrib>Orozco-Barbosa, Luis</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>SoftwareX</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo-Cara, Manuel</au><au>Talla-Chumpitaz, Reewos</au><au>García-Castro, Raúl</au><au>Orozco-Barbosa, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks</atitle><jtitle>SoftwareX</jtitle><date>2023-05</date><risdate>2023</risdate><volume>22</volume><spage>101391</spage><pages>101391-</pages><artnum>101391</artnum><issn>2352-7110</issn><eissn>2352-7110</eissn><abstract>The growing interest in the use of algorithms-based machine learning for predictive tasks has generated a large and diverse development of algorithms. However, it is widely known that not all of these algorithms are adapted to efficient solutions in certain tidy data format datasets. For this reason, novel techniques are currently being developed to convert tidy data into images with the aim of using Convolutional Neural Networks (CNNs). TINTO offers the opportunity to convert tidy data into images through the representation of characteristic pixels by implementing two dimensional reduction algorithms: Principal Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding (t-SNE). Our proposal also includes a blurring technique, which adds more ordered information to the image and can improve the classification task in CNNs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.softx.2023.101391</doi><orcidid>https://orcid.org/0000-0002-2990-7090</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-7110 |
ispartof | SoftwareX, 2023-05, Vol.22, p.101391, Article 101391 |
issn | 2352-7110 2352-7110 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f8b1035f798c40ad80aa3b8eaca6b491 |
source | ScienceDirect Journals |
subjects | Convolutional neural networks Image blurring technique Image classification Image generation Tabular data into image Tabular to image conversion |
title | TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TINTO:%20Converting%20Tidy%20Data%20into%20image%20for%20classification%20with%202-Dimensional%20Convolutional%20Neural%20Networks&rft.jtitle=SoftwareX&rft.au=Castillo-Cara,%20Manuel&rft.date=2023-05&rft.volume=22&rft.spage=101391&rft.pages=101391-&rft.artnum=101391&rft.issn=2352-7110&rft.eissn=2352-7110&rft_id=info:doi/10.1016/j.softx.2023.101391&rft_dat=%3Celsevier_doaj_%3ES2352711023000870%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-b1e5302402d0e6b52ce188c195b754d145d79ea45722d7ad8ffe88c81a1148c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |