Loading…

TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks

The growing interest in the use of algorithms-based machine learning for predictive tasks has generated a large and diverse development of algorithms. However, it is widely known that not all of these algorithms are adapted to efficient solutions in certain tidy data format datasets. For this reason...

Full description

Saved in:
Bibliographic Details
Published in:SoftwareX 2023-05, Vol.22, p.101391, Article 101391
Main Authors: Castillo-Cara, Manuel, Talla-Chumpitaz, Reewos, García-Castro, Raúl, Orozco-Barbosa, Luis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c364t-b1e5302402d0e6b52ce188c195b754d145d79ea45722d7ad8ffe88c81a1148c93
container_end_page
container_issue
container_start_page 101391
container_title SoftwareX
container_volume 22
creator Castillo-Cara, Manuel
Talla-Chumpitaz, Reewos
García-Castro, Raúl
Orozco-Barbosa, Luis
description The growing interest in the use of algorithms-based machine learning for predictive tasks has generated a large and diverse development of algorithms. However, it is widely known that not all of these algorithms are adapted to efficient solutions in certain tidy data format datasets. For this reason, novel techniques are currently being developed to convert tidy data into images with the aim of using Convolutional Neural Networks (CNNs). TINTO offers the opportunity to convert tidy data into images through the representation of characteristic pixels by implementing two dimensional reduction algorithms: Principal Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding (t-SNE). Our proposal also includes a blurring technique, which adds more ordered information to the image and can improve the classification task in CNNs.
doi_str_mv 10.1016/j.softx.2023.101391
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f8b1035f798c40ad80aa3b8eaca6b491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352711023000870</els_id><doaj_id>oai_doaj_org_article_f8b1035f798c40ad80aa3b8eaca6b491</doaj_id><sourcerecordid>S2352711023000870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-b1e5302402d0e6b52ce188c195b754d145d79ea45722d7ad8ffe88c81a1148c93</originalsourceid><addsrcrecordid>eNp9kM1uFDEQhEcIJKKQJ-DiF5jF7Z8dDxIHtOFnpSi5LGerx9NePEzGyHYS8vZ4dxDixKm7y6pPrmqat8A3wGH7btrk6MuvjeBCnhTZw4vmQkgt2g6Av_xnf91c5TxxzkELo4W6aKbD_vZw957t4vJIqYTlyA5hfGbXWJCFpUQW7vFIzMfE3Iw5Bx8clhAX9hTKdyba63BPS64CzmdKnB_Ket3SQzqP8hTTj_ymeeVxznT1Z1423z5_Ouy-tjd3X_a7jzetk1tV2gFISy4UFyOn7aCFIzDGQa-HTqsRlB67nlDpToixw9F4T_XdAAIo43p52exX7hhxsj9TDZCebcRgz0JMR4s1qZvJejMAl9p3vXGKVxZHlIMhdLgdVA-VJVeWSzHnRP4vD7g9tW8ne27fntq3a_vV9WF1UY35GCjZ7AItjsaQyJX6j_Bf_29M6I8l</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks</title><source>ScienceDirect Journals</source><creator>Castillo-Cara, Manuel ; Talla-Chumpitaz, Reewos ; García-Castro, Raúl ; Orozco-Barbosa, Luis</creator><creatorcontrib>Castillo-Cara, Manuel ; Talla-Chumpitaz, Reewos ; García-Castro, Raúl ; Orozco-Barbosa, Luis</creatorcontrib><description>The growing interest in the use of algorithms-based machine learning for predictive tasks has generated a large and diverse development of algorithms. However, it is widely known that not all of these algorithms are adapted to efficient solutions in certain tidy data format datasets. For this reason, novel techniques are currently being developed to convert tidy data into images with the aim of using Convolutional Neural Networks (CNNs). TINTO offers the opportunity to convert tidy data into images through the representation of characteristic pixels by implementing two dimensional reduction algorithms: Principal Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding (t-SNE). Our proposal also includes a blurring technique, which adds more ordered information to the image and can improve the classification task in CNNs.</description><identifier>ISSN: 2352-7110</identifier><identifier>EISSN: 2352-7110</identifier><identifier>DOI: 10.1016/j.softx.2023.101391</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Convolutional neural networks ; Image blurring technique ; Image classification ; Image generation ; Tabular data into image ; Tabular to image conversion</subject><ispartof>SoftwareX, 2023-05, Vol.22, p.101391, Article 101391</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-b1e5302402d0e6b52ce188c195b754d145d79ea45722d7ad8ffe88c81a1148c93</cites><orcidid>0000-0002-2990-7090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352711023000870$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Castillo-Cara, Manuel</creatorcontrib><creatorcontrib>Talla-Chumpitaz, Reewos</creatorcontrib><creatorcontrib>García-Castro, Raúl</creatorcontrib><creatorcontrib>Orozco-Barbosa, Luis</creatorcontrib><title>TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks</title><title>SoftwareX</title><description>The growing interest in the use of algorithms-based machine learning for predictive tasks has generated a large and diverse development of algorithms. However, it is widely known that not all of these algorithms are adapted to efficient solutions in certain tidy data format datasets. For this reason, novel techniques are currently being developed to convert tidy data into images with the aim of using Convolutional Neural Networks (CNNs). TINTO offers the opportunity to convert tidy data into images through the representation of characteristic pixels by implementing two dimensional reduction algorithms: Principal Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding (t-SNE). Our proposal also includes a blurring technique, which adds more ordered information to the image and can improve the classification task in CNNs.</description><subject>Convolutional neural networks</subject><subject>Image blurring technique</subject><subject>Image classification</subject><subject>Image generation</subject><subject>Tabular data into image</subject><subject>Tabular to image conversion</subject><issn>2352-7110</issn><issn>2352-7110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kM1uFDEQhEcIJKKQJ-DiF5jF7Z8dDxIHtOFnpSi5LGerx9NePEzGyHYS8vZ4dxDixKm7y6pPrmqat8A3wGH7btrk6MuvjeBCnhTZw4vmQkgt2g6Av_xnf91c5TxxzkELo4W6aKbD_vZw957t4vJIqYTlyA5hfGbXWJCFpUQW7vFIzMfE3Iw5Bx8clhAX9hTKdyba63BPS64CzmdKnB_Ket3SQzqP8hTTj_ymeeVxznT1Z1423z5_Ouy-tjd3X_a7jzetk1tV2gFISy4UFyOn7aCFIzDGQa-HTqsRlB67nlDpToixw9F4T_XdAAIo43p52exX7hhxsj9TDZCebcRgz0JMR4s1qZvJejMAl9p3vXGKVxZHlIMhdLgdVA-VJVeWSzHnRP4vD7g9tW8ne27fntq3a_vV9WF1UY35GCjZ7AItjsaQyJX6j_Bf_29M6I8l</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Castillo-Cara, Manuel</creator><creator>Talla-Chumpitaz, Reewos</creator><creator>García-Castro, Raúl</creator><creator>Orozco-Barbosa, Luis</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2990-7090</orcidid></search><sort><creationdate>202305</creationdate><title>TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks</title><author>Castillo-Cara, Manuel ; Talla-Chumpitaz, Reewos ; García-Castro, Raúl ; Orozco-Barbosa, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-b1e5302402d0e6b52ce188c195b754d145d79ea45722d7ad8ffe88c81a1148c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convolutional neural networks</topic><topic>Image blurring technique</topic><topic>Image classification</topic><topic>Image generation</topic><topic>Tabular data into image</topic><topic>Tabular to image conversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo-Cara, Manuel</creatorcontrib><creatorcontrib>Talla-Chumpitaz, Reewos</creatorcontrib><creatorcontrib>García-Castro, Raúl</creatorcontrib><creatorcontrib>Orozco-Barbosa, Luis</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>SoftwareX</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo-Cara, Manuel</au><au>Talla-Chumpitaz, Reewos</au><au>García-Castro, Raúl</au><au>Orozco-Barbosa, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks</atitle><jtitle>SoftwareX</jtitle><date>2023-05</date><risdate>2023</risdate><volume>22</volume><spage>101391</spage><pages>101391-</pages><artnum>101391</artnum><issn>2352-7110</issn><eissn>2352-7110</eissn><abstract>The growing interest in the use of algorithms-based machine learning for predictive tasks has generated a large and diverse development of algorithms. However, it is widely known that not all of these algorithms are adapted to efficient solutions in certain tidy data format datasets. For this reason, novel techniques are currently being developed to convert tidy data into images with the aim of using Convolutional Neural Networks (CNNs). TINTO offers the opportunity to convert tidy data into images through the representation of characteristic pixels by implementing two dimensional reduction algorithms: Principal Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding (t-SNE). Our proposal also includes a blurring technique, which adds more ordered information to the image and can improve the classification task in CNNs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.softx.2023.101391</doi><orcidid>https://orcid.org/0000-0002-2990-7090</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-7110
ispartof SoftwareX, 2023-05, Vol.22, p.101391, Article 101391
issn 2352-7110
2352-7110
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f8b1035f798c40ad80aa3b8eaca6b491
source ScienceDirect Journals
subjects Convolutional neural networks
Image blurring technique
Image classification
Image generation
Tabular data into image
Tabular to image conversion
title TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TINTO:%20Converting%20Tidy%20Data%20into%20image%20for%20classification%20with%202-Dimensional%20Convolutional%20Neural%20Networks&rft.jtitle=SoftwareX&rft.au=Castillo-Cara,%20Manuel&rft.date=2023-05&rft.volume=22&rft.spage=101391&rft.pages=101391-&rft.artnum=101391&rft.issn=2352-7110&rft.eissn=2352-7110&rft_id=info:doi/10.1016/j.softx.2023.101391&rft_dat=%3Celsevier_doaj_%3ES2352711023000870%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-b1e5302402d0e6b52ce188c195b754d145d79ea45722d7ad8ffe88c81a1148c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true