Loading…

Dose‐dependent cranial irradiation associations with brain structures and neuropsychological outcomes in children with posterior fossa brain tumors

Background Posterior fossa irradiation with or without whole brain irradiation results in high doses of radiation to the thalamus, hippocampus, and putamen, structures critical to cognitive functioning. As a result, children with brain tumors treated with cranial irradiation (CRT) may experience sig...

Full description

Saved in:
Bibliographic Details
Published in:Brain and behavior 2024-09, Vol.14 (9), p.e70019-n/a
Main Authors: Baron Nelson, Mary, O'Neil, Sharon H., Cho, Scarlet J., Dhanani, Sofia, Tanedo, Jeffrey, Shin, Brandon J., Rodman, Jack, Olch, Arthur, Wong, Kenneth, Nelson, Marvin D., Finlay, Jonathan, Lepore, Natasha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Posterior fossa irradiation with or without whole brain irradiation results in high doses of radiation to the thalamus, hippocampus, and putamen, structures critical to cognitive functioning. As a result, children with brain tumors treated with cranial irradiation (CRT) may experience significant cognitive late effects. We sought to determine the effect of radiation to those structures on neuropsychological outcome. Methods Forty‐seven children with a history of posterior fossa tumor (17 treated with surgery; 11 with surgery and chemotherapy; and 19 with surgery, chemotherapy, and CRT) underwent neuroimaging and neuropsychological assessment at a mean of 4.8 years after treatment, along with 17 healthy sibling controls. The putamen, thalamus, and hippocampus were segmented on each participant's magnetic resonance imaging for diffusion indices and volumes, and in the radiation treatment group, radiation dose to each structure was calculated. Results Performance on visuoconstruction and spatial learning and memory was lower in patient groups than controls. Volume of the thalamus, when controlling for age, was smaller in the patient group treated with CRT than other groups. Higher radiation doses to the putamen correlated with higher fractional anisotropy in that structure. Higher radiation dose to the hippocampus correlated with lower spatial learning, and higher dose to thalami and putamina to lower verbal and nonverbal reasoning. Conclusions All children with posterior fossa tumors, regardless of treatment modality, had cognitive deficits compared to their sibling controls. Posterior fossa irradiation may affect thalamic volume and aspects of verbal and nonverbal cognitive functioning.
ISSN:2162-3279
2162-3279
DOI:10.1002/brb3.70019