Loading…
Exoskeleton-assisted training to enhance lower limb motor recovery in subacute stroke: does timing matter? A pilot randomized trial
BackgroundLower limb motor recovery, including abnormal muscle synergies, occurs mainly within the first 5–8 weeks after a stroke. This suggests the importance of delivering impairment-focused therapies, such as therapeutic robots that promote symmetric gait, during this time-sensitive period, follo...
Saved in:
Published in: | Frontiers in stroke 2024-05, Vol.3 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BackgroundLower limb motor recovery, including abnormal muscle synergies, occurs mainly within the first 5–8 weeks after a stroke. This suggests the importance of delivering impairment-focused therapies, such as therapeutic robots that promote symmetric gait, during this time-sensitive period, following the principle of “the earlier, the better.”ObjectiveFirst, to compare early robotic training (ERT) with usual care (UC) against UC alone on restoring intralimb muscle synergies and interlimb symmetry during functional tasks; Second, to investigate whether ERT is superior to delayed robotic training (DRT) starting after the proposed time-sensitive period.MethodsThis observer-blinded, randomized pilot trial with crossover design involved 19 nonambulatory adults included within 14 days poststroke. Those allocated to ERT (N = 10) received immediately 4 weeks of training (16 sessions, 4× /week) with the Ekso GT® above UC and were compared with the DRT group (N = 9) who received UC alone at this point. Thereafter a 3-week UC period followed to investigate sustainability of ERT and the interventional roles were exchanged; at about week 8 poststroke DRT subjects started the same experimental robotic protocol and ERT subjects continued UC as controls. Outcomes included changes in Fugl-Meyer lower extremity scores (FM-LE) reflecting muscle synergies, weight-bearing asymmetry (WBA), and dynamic control asymmetry (DCA) during quiet standing. Functional ambulation category (FAC) was used to classify walking independence (cut-off ≥4).ResultsA trend toward earlier reacquisition of walking independence favoring ERT with UC over UC was not accompanied by differences in FM-LE, WBA, or DCA (first objective). Thereafter, DRT with UC did not yield any significant changes relative to UC, such that no between-group differences were found favoring restorative effects of ERT over DRT (second objective).ConclusionThis pilot trial shows the feasibility of investigating a wearable exoskeleton as an adjunct therapy in subacute stroke. Nevertheless, our preliminary findings suggest that motor recovery of lower limb muscle synergies was not enhanced by 4 weeks of robotic training to reduce compensations with the less-affected side, irrespective of the timing of application.Trial registrationClinicalTrials.gov, identifier: NCT03727919. |
---|---|
ISSN: | 2813-3056 2813-3056 |
DOI: | 10.3389/fstro.2024.1379083 |