Loading…

Interruption Risk Assessment and Transmission of Fresh Cold Chain Network Based on a Fuzzy Bayesian Network

The fresh cold chain network is complex, and the interruption risk can significantly impact it. Based on the Bayesian theory, we constructed a fresh cold chain network interruption risk topology structure. The probability of each root node was predicted and calculated based on the fuzzy set theory....

Full description

Saved in:
Bibliographic Details
Published in:Discrete dynamics in nature and society 2021-07, Vol.2021, p.1-11
Main Authors: Chen, Huanwan, Zhang, Qingnian, Luo, Jing, Zhang, Xiuxia, Chen, Guopeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883
cites cdi_FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883
container_end_page 11
container_issue
container_start_page 1
container_title Discrete dynamics in nature and society
container_volume 2021
creator Chen, Huanwan
Zhang, Qingnian
Luo, Jing
Zhang, Xiuxia
Chen, Guopeng
description The fresh cold chain network is complex, and the interruption risk can significantly impact it. Based on the Bayesian theory, we constructed a fresh cold chain network interruption risk topology structure. The probability of each root node was predicted and calculated based on the fuzzy set theory. The evaluation model was then validated and improved through the virus transmission model based on risk transmission. Sensitivity analysis was used to determine significant risk factors. Several strategies for minimizing interruption risks were identified.
doi_str_mv 10.1155/2021/9922569
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f8dc4a7688814a928408c023ffa9af27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696881533</galeid><doaj_id>oai_doaj_org_article_f8dc4a7688814a928408c023ffa9af27</doaj_id><sourcerecordid>A696881533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhgexYG298wcEvNRpk8xMcnK5Lq4ulAqlBe_CMR_d7EeyJrOU7a832y0VQSQXCS_PeUjyNs17Ri8YG4ZLTjm7VIrzQahXzSkTVLYA8sfreqZctJRz8aZ5W8qSUk5B8dNmNY-jy3m3HUOK5CaUFZmU4krZuDgSjJbcZoxlE0o5AMmTWXZlQaZpbcl0gSGSazc-pLwin7E4SyqEZLZ7fNzXYO9KwBfivDnxuC7u3fN-1tzNvtxOv7VX37_Op5Or1vSSji1YCehAeMd6brw0jIJztKe952BF1ysvPRvcYP1PCZYLbkFJY4RxCjhAd9bMj16bcKm3OWww73XCoJ-ClO815jGYtdMerOlRCgBgPSoOPQVDeec9KvRcVteHo2ub06-dK6Nepl2O9fqaDwOXPchO_KHusUpD9GnMaOqnGT0RqtrZ0HWVuvgHVZd1m2BSdD7U_K-BT8cBk1Mp2fmXxzCqD43rQ-P6ufGKfzziixAtPoT_078BJBSo6Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552748736</pqid></control><display><type>article</type><title>Interruption Risk Assessment and Transmission of Fresh Cold Chain Network Based on a Fuzzy Bayesian Network</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Chen, Huanwan ; Zhang, Qingnian ; Luo, Jing ; Zhang, Xiuxia ; Chen, Guopeng</creator><contributor>Di Paola, Luisa ; Luisa Di Paola</contributor><creatorcontrib>Chen, Huanwan ; Zhang, Qingnian ; Luo, Jing ; Zhang, Xiuxia ; Chen, Guopeng ; Di Paola, Luisa ; Luisa Di Paola</creatorcontrib><description>The fresh cold chain network is complex, and the interruption risk can significantly impact it. Based on the Bayesian theory, we constructed a fresh cold chain network interruption risk topology structure. The probability of each root node was predicted and calculated based on the fuzzy set theory. The evaluation model was then validated and improved through the virus transmission model based on risk transmission. Sensitivity analysis was used to determine significant risk factors. Several strategies for minimizing interruption risks were identified.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2021/9922569</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Agricultural production ; Bayesian analysis ; Cold ; Collaboration ; Computer programs ; Coronaviruses ; COVID-19 ; Decision making ; Disease transmission ; Electronic commerce ; Fuzzy set theory ; Fuzzy sets ; Information storage ; Inventory ; Probability ; Probability distribution ; Random variables ; Risk analysis ; Risk assessment ; Sensitivity analysis ; Supply chains ; Topology</subject><ispartof>Discrete dynamics in nature and society, 2021-07, Vol.2021, p.1-11</ispartof><rights>Copyright © 2021 Huanwan Chen et al.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 Huanwan Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883</citedby><cites>FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883</cites><orcidid>0000-0002-4839-4585 ; 0000-0002-1040-8419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2552748736?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2552748736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,38495,43874,44569,74159,74873</link.rule.ids></links><search><contributor>Di Paola, Luisa</contributor><contributor>Luisa Di Paola</contributor><creatorcontrib>Chen, Huanwan</creatorcontrib><creatorcontrib>Zhang, Qingnian</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Zhang, Xiuxia</creatorcontrib><creatorcontrib>Chen, Guopeng</creatorcontrib><title>Interruption Risk Assessment and Transmission of Fresh Cold Chain Network Based on a Fuzzy Bayesian Network</title><title>Discrete dynamics in nature and society</title><description>The fresh cold chain network is complex, and the interruption risk can significantly impact it. Based on the Bayesian theory, we constructed a fresh cold chain network interruption risk topology structure. The probability of each root node was predicted and calculated based on the fuzzy set theory. The evaluation model was then validated and improved through the virus transmission model based on risk transmission. Sensitivity analysis was used to determine significant risk factors. Several strategies for minimizing interruption risks were identified.</description><subject>Agricultural production</subject><subject>Bayesian analysis</subject><subject>Cold</subject><subject>Collaboration</subject><subject>Computer programs</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Decision making</subject><subject>Disease transmission</subject><subject>Electronic commerce</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Information storage</subject><subject>Inventory</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Sensitivity analysis</subject><subject>Supply chains</subject><subject>Topology</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV1rFDEUhgexYG298wcEvNRpk8xMcnK5Lq4ulAqlBe_CMR_d7EeyJrOU7a832y0VQSQXCS_PeUjyNs17Ri8YG4ZLTjm7VIrzQahXzSkTVLYA8sfreqZctJRz8aZ5W8qSUk5B8dNmNY-jy3m3HUOK5CaUFZmU4krZuDgSjJbcZoxlE0o5AMmTWXZlQaZpbcl0gSGSazc-pLwin7E4SyqEZLZ7fNzXYO9KwBfivDnxuC7u3fN-1tzNvtxOv7VX37_Op5Or1vSSji1YCehAeMd6brw0jIJztKe952BF1ysvPRvcYP1PCZYLbkFJY4RxCjhAd9bMj16bcKm3OWww73XCoJ-ClO815jGYtdMerOlRCgBgPSoOPQVDeec9KvRcVteHo2ub06-dK6Nepl2O9fqaDwOXPchO_KHusUpD9GnMaOqnGT0RqtrZ0HWVuvgHVZd1m2BSdD7U_K-BT8cBk1Mp2fmXxzCqD43rQ-P6ufGKfzziixAtPoT_078BJBSo6Q</recordid><startdate>20210707</startdate><enddate>20210707</enddate><creator>Chen, Huanwan</creator><creator>Zhang, Qingnian</creator><creator>Luo, Jing</creator><creator>Zhang, Xiuxia</creator><creator>Chen, Guopeng</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4839-4585</orcidid><orcidid>https://orcid.org/0000-0002-1040-8419</orcidid></search><sort><creationdate>20210707</creationdate><title>Interruption Risk Assessment and Transmission of Fresh Cold Chain Network Based on a Fuzzy Bayesian Network</title><author>Chen, Huanwan ; Zhang, Qingnian ; Luo, Jing ; Zhang, Xiuxia ; Chen, Guopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural production</topic><topic>Bayesian analysis</topic><topic>Cold</topic><topic>Collaboration</topic><topic>Computer programs</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Decision making</topic><topic>Disease transmission</topic><topic>Electronic commerce</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Information storage</topic><topic>Inventory</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Sensitivity analysis</topic><topic>Supply chains</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huanwan</creatorcontrib><creatorcontrib>Zhang, Qingnian</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Zhang, Xiuxia</creatorcontrib><creatorcontrib>Chen, Guopeng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huanwan</au><au>Zhang, Qingnian</au><au>Luo, Jing</au><au>Zhang, Xiuxia</au><au>Chen, Guopeng</au><au>Di Paola, Luisa</au><au>Luisa Di Paola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interruption Risk Assessment and Transmission of Fresh Cold Chain Network Based on a Fuzzy Bayesian Network</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2021-07-07</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>The fresh cold chain network is complex, and the interruption risk can significantly impact it. Based on the Bayesian theory, we constructed a fresh cold chain network interruption risk topology structure. The probability of each root node was predicted and calculated based on the fuzzy set theory. The evaluation model was then validated and improved through the virus transmission model based on risk transmission. Sensitivity analysis was used to determine significant risk factors. Several strategies for minimizing interruption risks were identified.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/9922569</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4839-4585</orcidid><orcidid>https://orcid.org/0000-0002-1040-8419</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1026-0226
ispartof Discrete dynamics in nature and society, 2021-07, Vol.2021, p.1-11
issn 1026-0226
1607-887X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f8dc4a7688814a928408c023ffa9af27
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database; Coronavirus Research Database
subjects Agricultural production
Bayesian analysis
Cold
Collaboration
Computer programs
Coronaviruses
COVID-19
Decision making
Disease transmission
Electronic commerce
Fuzzy set theory
Fuzzy sets
Information storage
Inventory
Probability
Probability distribution
Random variables
Risk analysis
Risk assessment
Sensitivity analysis
Supply chains
Topology
title Interruption Risk Assessment and Transmission of Fresh Cold Chain Network Based on a Fuzzy Bayesian Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interruption%20Risk%20Assessment%20and%20Transmission%20of%20Fresh%20Cold%20Chain%20Network%20Based%20on%20a%20Fuzzy%20Bayesian%20Network&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Chen,%20Huanwan&rft.date=2021-07-07&rft.volume=2021&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2021/9922569&rft_dat=%3Cgale_doaj_%3EA696881533%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2552748736&rft_id=info:pmid/&rft_galeid=A696881533&rfr_iscdi=true