Loading…
Interruption Risk Assessment and Transmission of Fresh Cold Chain Network Based on a Fuzzy Bayesian Network
The fresh cold chain network is complex, and the interruption risk can significantly impact it. Based on the Bayesian theory, we constructed a fresh cold chain network interruption risk topology structure. The probability of each root node was predicted and calculated based on the fuzzy set theory....
Saved in:
Published in: | Discrete dynamics in nature and society 2021-07, Vol.2021, p.1-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883 |
container_end_page | 11 |
container_issue | |
container_start_page | 1 |
container_title | Discrete dynamics in nature and society |
container_volume | 2021 |
creator | Chen, Huanwan Zhang, Qingnian Luo, Jing Zhang, Xiuxia Chen, Guopeng |
description | The fresh cold chain network is complex, and the interruption risk can significantly impact it. Based on the Bayesian theory, we constructed a fresh cold chain network interruption risk topology structure. The probability of each root node was predicted and calculated based on the fuzzy set theory. The evaluation model was then validated and improved through the virus transmission model based on risk transmission. Sensitivity analysis was used to determine significant risk factors. Several strategies for minimizing interruption risks were identified. |
doi_str_mv | 10.1155/2021/9922569 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f8dc4a7688814a928408c023ffa9af27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696881533</galeid><doaj_id>oai_doaj_org_article_f8dc4a7688814a928408c023ffa9af27</doaj_id><sourcerecordid>A696881533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhgexYG298wcEvNRpk8xMcnK5Lq4ulAqlBe_CMR_d7EeyJrOU7a832y0VQSQXCS_PeUjyNs17Ri8YG4ZLTjm7VIrzQahXzSkTVLYA8sfreqZctJRz8aZ5W8qSUk5B8dNmNY-jy3m3HUOK5CaUFZmU4krZuDgSjJbcZoxlE0o5AMmTWXZlQaZpbcl0gSGSazc-pLwin7E4SyqEZLZ7fNzXYO9KwBfivDnxuC7u3fN-1tzNvtxOv7VX37_Op5Or1vSSji1YCehAeMd6brw0jIJztKe952BF1ysvPRvcYP1PCZYLbkFJY4RxCjhAd9bMj16bcKm3OWww73XCoJ-ClO815jGYtdMerOlRCgBgPSoOPQVDeec9KvRcVteHo2ub06-dK6Nepl2O9fqaDwOXPchO_KHusUpD9GnMaOqnGT0RqtrZ0HWVuvgHVZd1m2BSdD7U_K-BT8cBk1Mp2fmXxzCqD43rQ-P6ufGKfzziixAtPoT_078BJBSo6Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552748736</pqid></control><display><type>article</type><title>Interruption Risk Assessment and Transmission of Fresh Cold Chain Network Based on a Fuzzy Bayesian Network</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Chen, Huanwan ; Zhang, Qingnian ; Luo, Jing ; Zhang, Xiuxia ; Chen, Guopeng</creator><contributor>Di Paola, Luisa ; Luisa Di Paola</contributor><creatorcontrib>Chen, Huanwan ; Zhang, Qingnian ; Luo, Jing ; Zhang, Xiuxia ; Chen, Guopeng ; Di Paola, Luisa ; Luisa Di Paola</creatorcontrib><description>The fresh cold chain network is complex, and the interruption risk can significantly impact it. Based on the Bayesian theory, we constructed a fresh cold chain network interruption risk topology structure. The probability of each root node was predicted and calculated based on the fuzzy set theory. The evaluation model was then validated and improved through the virus transmission model based on risk transmission. Sensitivity analysis was used to determine significant risk factors. Several strategies for minimizing interruption risks were identified.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2021/9922569</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Agricultural production ; Bayesian analysis ; Cold ; Collaboration ; Computer programs ; Coronaviruses ; COVID-19 ; Decision making ; Disease transmission ; Electronic commerce ; Fuzzy set theory ; Fuzzy sets ; Information storage ; Inventory ; Probability ; Probability distribution ; Random variables ; Risk analysis ; Risk assessment ; Sensitivity analysis ; Supply chains ; Topology</subject><ispartof>Discrete dynamics in nature and society, 2021-07, Vol.2021, p.1-11</ispartof><rights>Copyright © 2021 Huanwan Chen et al.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>Copyright © 2021 Huanwan Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883</citedby><cites>FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883</cites><orcidid>0000-0002-4839-4585 ; 0000-0002-1040-8419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2552748736?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2552748736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,38495,43874,44569,74159,74873</link.rule.ids></links><search><contributor>Di Paola, Luisa</contributor><contributor>Luisa Di Paola</contributor><creatorcontrib>Chen, Huanwan</creatorcontrib><creatorcontrib>Zhang, Qingnian</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Zhang, Xiuxia</creatorcontrib><creatorcontrib>Chen, Guopeng</creatorcontrib><title>Interruption Risk Assessment and Transmission of Fresh Cold Chain Network Based on a Fuzzy Bayesian Network</title><title>Discrete dynamics in nature and society</title><description>The fresh cold chain network is complex, and the interruption risk can significantly impact it. Based on the Bayesian theory, we constructed a fresh cold chain network interruption risk topology structure. The probability of each root node was predicted and calculated based on the fuzzy set theory. The evaluation model was then validated and improved through the virus transmission model based on risk transmission. Sensitivity analysis was used to determine significant risk factors. Several strategies for minimizing interruption risks were identified.</description><subject>Agricultural production</subject><subject>Bayesian analysis</subject><subject>Cold</subject><subject>Collaboration</subject><subject>Computer programs</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Decision making</subject><subject>Disease transmission</subject><subject>Electronic commerce</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Information storage</subject><subject>Inventory</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Sensitivity analysis</subject><subject>Supply chains</subject><subject>Topology</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV1rFDEUhgexYG298wcEvNRpk8xMcnK5Lq4ulAqlBe_CMR_d7EeyJrOU7a832y0VQSQXCS_PeUjyNs17Ri8YG4ZLTjm7VIrzQahXzSkTVLYA8sfreqZctJRz8aZ5W8qSUk5B8dNmNY-jy3m3HUOK5CaUFZmU4krZuDgSjJbcZoxlE0o5AMmTWXZlQaZpbcl0gSGSazc-pLwin7E4SyqEZLZ7fNzXYO9KwBfivDnxuC7u3fN-1tzNvtxOv7VX37_Op5Or1vSSji1YCehAeMd6brw0jIJztKe952BF1ysvPRvcYP1PCZYLbkFJY4RxCjhAd9bMj16bcKm3OWww73XCoJ-ClO815jGYtdMerOlRCgBgPSoOPQVDeec9KvRcVteHo2ub06-dK6Nepl2O9fqaDwOXPchO_KHusUpD9GnMaOqnGT0RqtrZ0HWVuvgHVZd1m2BSdD7U_K-BT8cBk1Mp2fmXxzCqD43rQ-P6ufGKfzziixAtPoT_078BJBSo6Q</recordid><startdate>20210707</startdate><enddate>20210707</enddate><creator>Chen, Huanwan</creator><creator>Zhang, Qingnian</creator><creator>Luo, Jing</creator><creator>Zhang, Xiuxia</creator><creator>Chen, Guopeng</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4839-4585</orcidid><orcidid>https://orcid.org/0000-0002-1040-8419</orcidid></search><sort><creationdate>20210707</creationdate><title>Interruption Risk Assessment and Transmission of Fresh Cold Chain Network Based on a Fuzzy Bayesian Network</title><author>Chen, Huanwan ; Zhang, Qingnian ; Luo, Jing ; Zhang, Xiuxia ; Chen, Guopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural production</topic><topic>Bayesian analysis</topic><topic>Cold</topic><topic>Collaboration</topic><topic>Computer programs</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Decision making</topic><topic>Disease transmission</topic><topic>Electronic commerce</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Information storage</topic><topic>Inventory</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Sensitivity analysis</topic><topic>Supply chains</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huanwan</creatorcontrib><creatorcontrib>Zhang, Qingnian</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Zhang, Xiuxia</creatorcontrib><creatorcontrib>Chen, Guopeng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huanwan</au><au>Zhang, Qingnian</au><au>Luo, Jing</au><au>Zhang, Xiuxia</au><au>Chen, Guopeng</au><au>Di Paola, Luisa</au><au>Luisa Di Paola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interruption Risk Assessment and Transmission of Fresh Cold Chain Network Based on a Fuzzy Bayesian Network</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2021-07-07</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>The fresh cold chain network is complex, and the interruption risk can significantly impact it. Based on the Bayesian theory, we constructed a fresh cold chain network interruption risk topology structure. The probability of each root node was predicted and calculated based on the fuzzy set theory. The evaluation model was then validated and improved through the virus transmission model based on risk transmission. Sensitivity analysis was used to determine significant risk factors. Several strategies for minimizing interruption risks were identified.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/9922569</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4839-4585</orcidid><orcidid>https://orcid.org/0000-0002-1040-8419</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1026-0226 |
ispartof | Discrete dynamics in nature and society, 2021-07, Vol.2021, p.1-11 |
issn | 1026-0226 1607-887X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f8dc4a7688814a928408c023ffa9af27 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database; Coronavirus Research Database |
subjects | Agricultural production Bayesian analysis Cold Collaboration Computer programs Coronaviruses COVID-19 Decision making Disease transmission Electronic commerce Fuzzy set theory Fuzzy sets Information storage Inventory Probability Probability distribution Random variables Risk analysis Risk assessment Sensitivity analysis Supply chains Topology |
title | Interruption Risk Assessment and Transmission of Fresh Cold Chain Network Based on a Fuzzy Bayesian Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interruption%20Risk%20Assessment%20and%20Transmission%20of%20Fresh%20Cold%20Chain%20Network%20Based%20on%20a%20Fuzzy%20Bayesian%20Network&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Chen,%20Huanwan&rft.date=2021-07-07&rft.volume=2021&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2021/9922569&rft_dat=%3Cgale_doaj_%3EA696881533%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-8d78ae86fe142cf7c108ee0404f28d6349f7f15e5dfb78d262d897cc6ce982883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2552748736&rft_id=info:pmid/&rft_galeid=A696881533&rfr_iscdi=true |