Loading…
Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model
Machine learning (ML) as a powerful data-driven method is widely used for mineral prospectivity mapping. This study employs a hybrid of the genetic algorithm (GA) and support vector machine (SVM) model to map prospective areas for Au deposits in Karamay, northwest China. In the proposed method, GA i...
Saved in:
Published in: | ISPRS international journal of geo-information 2021-11, Vol.10 (11), p.766 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3 |
container_end_page | |
container_issue | 11 |
container_start_page | 766 |
container_title | ISPRS international journal of geo-information |
container_volume | 10 |
creator | Du, Xishihui Zhou, Kefa Cui, Yao Wang, Jinlin Zhou, Shuguang |
description | Machine learning (ML) as a powerful data-driven method is widely used for mineral prospectivity mapping. This study employs a hybrid of the genetic algorithm (GA) and support vector machine (SVM) model to map prospective areas for Au deposits in Karamay, northwest China. In the proposed method, GA is used as an adaptive optimization search method to optimize the SVM parameters that result in the best fitness. After obtaining evidence layers from geological and geochemical data, GA–SVM models trained using different training datasets were applied to discriminate between prospective and non-prospective areas for Au deposits, and to produce prospectivity maps for mineral exploration. The F1 score and spatial efficiency of classification were calculated to objectively evaluate the performance of each prospectivity model. The best model predicted 95.83% of the known Au deposits within prospective areas, occupying 35.68% of the study area. The results demonstrate the effectiveness of the GA–SVM model as a tool for mapping mineral prospectivity. |
doi_str_mv | 10.3390/ijgi10110766 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f9114c4c324045769e952e6f0bf9f753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f9114c4c324045769e952e6f0bf9f753</doaj_id><sourcerecordid>2602072223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3</originalsourceid><addsrcrecordid>eNpNkc1Kw0AQgIMoWKo3H2DBi4LR2Z9susdStC00KGh7XTab3XZL2o2bVOjNd_ANfRITK9K5zDA_3_xF0RWGe0oFPLj10mHAGFLOT6IeIQRiITg7PbLPo8u6XkMrAtMBg160ylRVue0SZW5rgirRS_B1ZXTjPlyzR_O6iyk02efBFWhstqZxGg3LpQ-uWW2-P79ed1XlQ4MWbZEPKFN61aLQzXjYBRfZLcp8YcqL6MyqsjaXf7ofzZ8e30aTePY8no6Gs1hTnjZxktiUCRADC7ywyYDnCvJEGy0oMGpsSiAlTNNc8YECTgwujKBE2BwDZ9zQfjQ9cAuv1rIKbqPCXnrl5K_Dh6VUod2hNNIKjJluYYQBS1IujEiI4RZyK2ya0JZ1fWBVwb_vTN3Itd-FbTu-JBy6SQjpsu4OWbo9XR2M_e-KQXavkcevoT9xAoFj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602072223</pqid></control><display><type>article</type><title>Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model</title><source>ProQuest - Publicly Available Content Database</source><creator>Du, Xishihui ; Zhou, Kefa ; Cui, Yao ; Wang, Jinlin ; Zhou, Shuguang</creator><creatorcontrib>Du, Xishihui ; Zhou, Kefa ; Cui, Yao ; Wang, Jinlin ; Zhou, Shuguang</creatorcontrib><description>Machine learning (ML) as a powerful data-driven method is widely used for mineral prospectivity mapping. This study employs a hybrid of the genetic algorithm (GA) and support vector machine (SVM) model to map prospective areas for Au deposits in Karamay, northwest China. In the proposed method, GA is used as an adaptive optimization search method to optimize the SVM parameters that result in the best fitness. After obtaining evidence layers from geological and geochemical data, GA–SVM models trained using different training datasets were applied to discriminate between prospective and non-prospective areas for Au deposits, and to produce prospectivity maps for mineral exploration. The F1 score and spatial efficiency of classification were calculated to objectively evaluate the performance of each prospectivity model. The best model predicted 95.83% of the known Au deposits within prospective areas, occupying 35.68% of the study area. The results demonstrate the effectiveness of the GA–SVM model as a tool for mapping mineral prospectivity.</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi10110766</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Adaptive search techniques ; Algorithms ; Au deposits ; Classification ; Data processing ; Datasets ; Deposits ; Gene mapping ; genetic algorithm ; Genetic algorithms ; Geology ; Learning algorithms ; Machine learning ; Mapping ; Mineral exploration ; mineral prospectivity mapping ; Mutation ; Optimization ; Optimization techniques ; Parameter estimation ; Spatial data ; support vector machine ; Support vector machines ; Training</subject><ispartof>ISPRS international journal of geo-information, 2021-11, Vol.10 (11), p.766</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3</citedby><cites>FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3</cites><orcidid>0000-0002-6107-5407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602072223/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602072223?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Du, Xishihui</creatorcontrib><creatorcontrib>Zhou, Kefa</creatorcontrib><creatorcontrib>Cui, Yao</creatorcontrib><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Zhou, Shuguang</creatorcontrib><title>Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model</title><title>ISPRS international journal of geo-information</title><description>Machine learning (ML) as a powerful data-driven method is widely used for mineral prospectivity mapping. This study employs a hybrid of the genetic algorithm (GA) and support vector machine (SVM) model to map prospective areas for Au deposits in Karamay, northwest China. In the proposed method, GA is used as an adaptive optimization search method to optimize the SVM parameters that result in the best fitness. After obtaining evidence layers from geological and geochemical data, GA–SVM models trained using different training datasets were applied to discriminate between prospective and non-prospective areas for Au deposits, and to produce prospectivity maps for mineral exploration. The F1 score and spatial efficiency of classification were calculated to objectively evaluate the performance of each prospectivity model. The best model predicted 95.83% of the known Au deposits within prospective areas, occupying 35.68% of the study area. The results demonstrate the effectiveness of the GA–SVM model as a tool for mapping mineral prospectivity.</description><subject>Accuracy</subject><subject>Adaptive search techniques</subject><subject>Algorithms</subject><subject>Au deposits</subject><subject>Classification</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Deposits</subject><subject>Gene mapping</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Geology</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Mineral exploration</subject><subject>mineral prospectivity mapping</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameter estimation</subject><subject>Spatial data</subject><subject>support vector machine</subject><subject>Support vector machines</subject><subject>Training</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1Kw0AQgIMoWKo3H2DBi4LR2Z9susdStC00KGh7XTab3XZL2o2bVOjNd_ANfRITK9K5zDA_3_xF0RWGe0oFPLj10mHAGFLOT6IeIQRiITg7PbLPo8u6XkMrAtMBg160ylRVue0SZW5rgirRS_B1ZXTjPlyzR_O6iyk02efBFWhstqZxGg3LpQ-uWW2-P79ed1XlQ4MWbZEPKFN61aLQzXjYBRfZLcp8YcqL6MyqsjaXf7ofzZ8e30aTePY8no6Gs1hTnjZxktiUCRADC7ywyYDnCvJEGy0oMGpsSiAlTNNc8YECTgwujKBE2BwDZ9zQfjQ9cAuv1rIKbqPCXnrl5K_Dh6VUod2hNNIKjJluYYQBS1IujEiI4RZyK2ya0JZ1fWBVwb_vTN3Itd-FbTu-JBy6SQjpsu4OWbo9XR2M_e-KQXavkcevoT9xAoFj</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Du, Xishihui</creator><creator>Zhou, Kefa</creator><creator>Cui, Yao</creator><creator>Wang, Jinlin</creator><creator>Zhou, Shuguang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6107-5407</orcidid></search><sort><creationdate>20211101</creationdate><title>Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model</title><author>Du, Xishihui ; Zhou, Kefa ; Cui, Yao ; Wang, Jinlin ; Zhou, Shuguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Adaptive search techniques</topic><topic>Algorithms</topic><topic>Au deposits</topic><topic>Classification</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Deposits</topic><topic>Gene mapping</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Geology</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Mineral exploration</topic><topic>mineral prospectivity mapping</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameter estimation</topic><topic>Spatial data</topic><topic>support vector machine</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Xishihui</creatorcontrib><creatorcontrib>Zhou, Kefa</creatorcontrib><creatorcontrib>Cui, Yao</creatorcontrib><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Zhou, Shuguang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Xishihui</au><au>Zhou, Kefa</au><au>Cui, Yao</au><au>Wang, Jinlin</au><au>Zhou, Shuguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>10</volume><issue>11</issue><spage>766</spage><pages>766-</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>Machine learning (ML) as a powerful data-driven method is widely used for mineral prospectivity mapping. This study employs a hybrid of the genetic algorithm (GA) and support vector machine (SVM) model to map prospective areas for Au deposits in Karamay, northwest China. In the proposed method, GA is used as an adaptive optimization search method to optimize the SVM parameters that result in the best fitness. After obtaining evidence layers from geological and geochemical data, GA–SVM models trained using different training datasets were applied to discriminate between prospective and non-prospective areas for Au deposits, and to produce prospectivity maps for mineral exploration. The F1 score and spatial efficiency of classification were calculated to objectively evaluate the performance of each prospectivity model. The best model predicted 95.83% of the known Au deposits within prospective areas, occupying 35.68% of the study area. The results demonstrate the effectiveness of the GA–SVM model as a tool for mapping mineral prospectivity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijgi10110766</doi><orcidid>https://orcid.org/0000-0002-6107-5407</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2220-9964 |
ispartof | ISPRS international journal of geo-information, 2021-11, Vol.10 (11), p.766 |
issn | 2220-9964 2220-9964 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f9114c4c324045769e952e6f0bf9f753 |
source | ProQuest - Publicly Available Content Database |
subjects | Accuracy Adaptive search techniques Algorithms Au deposits Classification Data processing Datasets Deposits Gene mapping genetic algorithm Genetic algorithms Geology Learning algorithms Machine learning Mapping Mineral exploration mineral prospectivity mapping Mutation Optimization Optimization techniques Parameter estimation Spatial data support vector machine Support vector machines Training |
title | Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T02%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20Mineral%20Prospectivity%20Using%20a%20Hybrid%20Genetic%20Algorithm%E2%80%93Support%20Vector%20Machine%20(GA%E2%80%93SVM)%20Model&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=Du,%20Xishihui&rft.date=2021-11-01&rft.volume=10&rft.issue=11&rft.spage=766&rft.pages=766-&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi10110766&rft_dat=%3Cproquest_doaj_%3E2602072223%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602072223&rft_id=info:pmid/&rfr_iscdi=true |