Loading…

Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model

Machine learning (ML) as a powerful data-driven method is widely used for mineral prospectivity mapping. This study employs a hybrid of the genetic algorithm (GA) and support vector machine (SVM) model to map prospective areas for Au deposits in Karamay, northwest China. In the proposed method, GA i...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS international journal of geo-information 2021-11, Vol.10 (11), p.766
Main Authors: Du, Xishihui, Zhou, Kefa, Cui, Yao, Wang, Jinlin, Zhou, Shuguang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3
cites cdi_FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3
container_end_page
container_issue 11
container_start_page 766
container_title ISPRS international journal of geo-information
container_volume 10
creator Du, Xishihui
Zhou, Kefa
Cui, Yao
Wang, Jinlin
Zhou, Shuguang
description Machine learning (ML) as a powerful data-driven method is widely used for mineral prospectivity mapping. This study employs a hybrid of the genetic algorithm (GA) and support vector machine (SVM) model to map prospective areas for Au deposits in Karamay, northwest China. In the proposed method, GA is used as an adaptive optimization search method to optimize the SVM parameters that result in the best fitness. After obtaining evidence layers from geological and geochemical data, GA–SVM models trained using different training datasets were applied to discriminate between prospective and non-prospective areas for Au deposits, and to produce prospectivity maps for mineral exploration. The F1 score and spatial efficiency of classification were calculated to objectively evaluate the performance of each prospectivity model. The best model predicted 95.83% of the known Au deposits within prospective areas, occupying 35.68% of the study area. The results demonstrate the effectiveness of the GA–SVM model as a tool for mapping mineral prospectivity.
doi_str_mv 10.3390/ijgi10110766
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f9114c4c324045769e952e6f0bf9f753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f9114c4c324045769e952e6f0bf9f753</doaj_id><sourcerecordid>2602072223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3</originalsourceid><addsrcrecordid>eNpNkc1Kw0AQgIMoWKo3H2DBi4LR2Z9susdStC00KGh7XTab3XZL2o2bVOjNd_ANfRITK9K5zDA_3_xF0RWGe0oFPLj10mHAGFLOT6IeIQRiITg7PbLPo8u6XkMrAtMBg160ylRVue0SZW5rgirRS_B1ZXTjPlyzR_O6iyk02efBFWhstqZxGg3LpQ-uWW2-P79ed1XlQ4MWbZEPKFN61aLQzXjYBRfZLcp8YcqL6MyqsjaXf7ofzZ8e30aTePY8no6Gs1hTnjZxktiUCRADC7ywyYDnCvJEGy0oMGpsSiAlTNNc8YECTgwujKBE2BwDZ9zQfjQ9cAuv1rIKbqPCXnrl5K_Dh6VUod2hNNIKjJluYYQBS1IujEiI4RZyK2ya0JZ1fWBVwb_vTN3Itd-FbTu-JBy6SQjpsu4OWbo9XR2M_e-KQXavkcevoT9xAoFj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602072223</pqid></control><display><type>article</type><title>Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model</title><source>ProQuest - Publicly Available Content Database</source><creator>Du, Xishihui ; Zhou, Kefa ; Cui, Yao ; Wang, Jinlin ; Zhou, Shuguang</creator><creatorcontrib>Du, Xishihui ; Zhou, Kefa ; Cui, Yao ; Wang, Jinlin ; Zhou, Shuguang</creatorcontrib><description>Machine learning (ML) as a powerful data-driven method is widely used for mineral prospectivity mapping. This study employs a hybrid of the genetic algorithm (GA) and support vector machine (SVM) model to map prospective areas for Au deposits in Karamay, northwest China. In the proposed method, GA is used as an adaptive optimization search method to optimize the SVM parameters that result in the best fitness. After obtaining evidence layers from geological and geochemical data, GA–SVM models trained using different training datasets were applied to discriminate between prospective and non-prospective areas for Au deposits, and to produce prospectivity maps for mineral exploration. The F1 score and spatial efficiency of classification were calculated to objectively evaluate the performance of each prospectivity model. The best model predicted 95.83% of the known Au deposits within prospective areas, occupying 35.68% of the study area. The results demonstrate the effectiveness of the GA–SVM model as a tool for mapping mineral prospectivity.</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi10110766</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Adaptive search techniques ; Algorithms ; Au deposits ; Classification ; Data processing ; Datasets ; Deposits ; Gene mapping ; genetic algorithm ; Genetic algorithms ; Geology ; Learning algorithms ; Machine learning ; Mapping ; Mineral exploration ; mineral prospectivity mapping ; Mutation ; Optimization ; Optimization techniques ; Parameter estimation ; Spatial data ; support vector machine ; Support vector machines ; Training</subject><ispartof>ISPRS international journal of geo-information, 2021-11, Vol.10 (11), p.766</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3</citedby><cites>FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3</cites><orcidid>0000-0002-6107-5407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602072223/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602072223?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Du, Xishihui</creatorcontrib><creatorcontrib>Zhou, Kefa</creatorcontrib><creatorcontrib>Cui, Yao</creatorcontrib><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Zhou, Shuguang</creatorcontrib><title>Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model</title><title>ISPRS international journal of geo-information</title><description>Machine learning (ML) as a powerful data-driven method is widely used for mineral prospectivity mapping. This study employs a hybrid of the genetic algorithm (GA) and support vector machine (SVM) model to map prospective areas for Au deposits in Karamay, northwest China. In the proposed method, GA is used as an adaptive optimization search method to optimize the SVM parameters that result in the best fitness. After obtaining evidence layers from geological and geochemical data, GA–SVM models trained using different training datasets were applied to discriminate between prospective and non-prospective areas for Au deposits, and to produce prospectivity maps for mineral exploration. The F1 score and spatial efficiency of classification were calculated to objectively evaluate the performance of each prospectivity model. The best model predicted 95.83% of the known Au deposits within prospective areas, occupying 35.68% of the study area. The results demonstrate the effectiveness of the GA–SVM model as a tool for mapping mineral prospectivity.</description><subject>Accuracy</subject><subject>Adaptive search techniques</subject><subject>Algorithms</subject><subject>Au deposits</subject><subject>Classification</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Deposits</subject><subject>Gene mapping</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Geology</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Mineral exploration</subject><subject>mineral prospectivity mapping</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameter estimation</subject><subject>Spatial data</subject><subject>support vector machine</subject><subject>Support vector machines</subject><subject>Training</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1Kw0AQgIMoWKo3H2DBi4LR2Z9susdStC00KGh7XTab3XZL2o2bVOjNd_ANfRITK9K5zDA_3_xF0RWGe0oFPLj10mHAGFLOT6IeIQRiITg7PbLPo8u6XkMrAtMBg160ylRVue0SZW5rgirRS_B1ZXTjPlyzR_O6iyk02efBFWhstqZxGg3LpQ-uWW2-P79ed1XlQ4MWbZEPKFN61aLQzXjYBRfZLcp8YcqL6MyqsjaXf7ofzZ8e30aTePY8no6Gs1hTnjZxktiUCRADC7ywyYDnCvJEGy0oMGpsSiAlTNNc8YECTgwujKBE2BwDZ9zQfjQ9cAuv1rIKbqPCXnrl5K_Dh6VUod2hNNIKjJluYYQBS1IujEiI4RZyK2ya0JZ1fWBVwb_vTN3Itd-FbTu-JBy6SQjpsu4OWbo9XR2M_e-KQXavkcevoT9xAoFj</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Du, Xishihui</creator><creator>Zhou, Kefa</creator><creator>Cui, Yao</creator><creator>Wang, Jinlin</creator><creator>Zhou, Shuguang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6107-5407</orcidid></search><sort><creationdate>20211101</creationdate><title>Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model</title><author>Du, Xishihui ; Zhou, Kefa ; Cui, Yao ; Wang, Jinlin ; Zhou, Shuguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Adaptive search techniques</topic><topic>Algorithms</topic><topic>Au deposits</topic><topic>Classification</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Deposits</topic><topic>Gene mapping</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Geology</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Mineral exploration</topic><topic>mineral prospectivity mapping</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameter estimation</topic><topic>Spatial data</topic><topic>support vector machine</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Xishihui</creatorcontrib><creatorcontrib>Zhou, Kefa</creatorcontrib><creatorcontrib>Cui, Yao</creatorcontrib><creatorcontrib>Wang, Jinlin</creatorcontrib><creatorcontrib>Zhou, Shuguang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Xishihui</au><au>Zhou, Kefa</au><au>Cui, Yao</au><au>Wang, Jinlin</au><au>Zhou, Shuguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>10</volume><issue>11</issue><spage>766</spage><pages>766-</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>Machine learning (ML) as a powerful data-driven method is widely used for mineral prospectivity mapping. This study employs a hybrid of the genetic algorithm (GA) and support vector machine (SVM) model to map prospective areas for Au deposits in Karamay, northwest China. In the proposed method, GA is used as an adaptive optimization search method to optimize the SVM parameters that result in the best fitness. After obtaining evidence layers from geological and geochemical data, GA–SVM models trained using different training datasets were applied to discriminate between prospective and non-prospective areas for Au deposits, and to produce prospectivity maps for mineral exploration. The F1 score and spatial efficiency of classification were calculated to objectively evaluate the performance of each prospectivity model. The best model predicted 95.83% of the known Au deposits within prospective areas, occupying 35.68% of the study area. The results demonstrate the effectiveness of the GA–SVM model as a tool for mapping mineral prospectivity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijgi10110766</doi><orcidid>https://orcid.org/0000-0002-6107-5407</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2220-9964
ispartof ISPRS international journal of geo-information, 2021-11, Vol.10 (11), p.766
issn 2220-9964
2220-9964
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f9114c4c324045769e952e6f0bf9f753
source ProQuest - Publicly Available Content Database
subjects Accuracy
Adaptive search techniques
Algorithms
Au deposits
Classification
Data processing
Datasets
Deposits
Gene mapping
genetic algorithm
Genetic algorithms
Geology
Learning algorithms
Machine learning
Mapping
Mineral exploration
mineral prospectivity mapping
Mutation
Optimization
Optimization techniques
Parameter estimation
Spatial data
support vector machine
Support vector machines
Training
title Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T02%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20Mineral%20Prospectivity%20Using%20a%20Hybrid%20Genetic%20Algorithm%E2%80%93Support%20Vector%20Machine%20(GA%E2%80%93SVM)%20Model&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=Du,%20Xishihui&rft.date=2021-11-01&rft.volume=10&rft.issue=11&rft.spage=766&rft.pages=766-&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi10110766&rft_dat=%3Cproquest_doaj_%3E2602072223%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-55f749098f06df586ba0b5cec93043ef720724c3ba68a062e1de9329fb10646e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602072223&rft_id=info:pmid/&rfr_iscdi=true