Loading…
Hysteresis Behavior of the Donor-Acceptor-Type Ambipolar Semiconductor for Non-Volatile Memory Applications
Donor-acceptor-type organic semiconductor molecules are of great interest for potential organic field-effect transistor applications with ambipolar characteristics and non-volatile memory applications. Here, we synthesized an organic semiconductor, PDPPT-TT, and directly utilized it in both field-ef...
Saved in:
Published in: | Micromachines (Basel) 2021-03, Vol.12 (3), p.301 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Donor-acceptor-type organic semiconductor molecules are of great interest for potential organic field-effect transistor applications with ambipolar characteristics and non-volatile memory applications. Here, we synthesized an organic semiconductor, PDPPT-TT, and directly utilized it in both field-effect transistor and non-volatile memory applications. As-synthesized PDPPT-TT was simply spin-coated on a substrate for the device fabrications. The PDPPT-TT based field-effect transistor showed ambipolar electrical transfer characteristics. Furthermore, a gold nanoparticle-embedded dielectric layer was used as a charge trapping layer for the non-volatile memory device applications. The non-volatile memory device showed clear memory window formation as applied gate voltage increases, and electrical stability was evaluated by performing retention and cycling tests. In summary, we demonstrate that a donor-acceptor-type organic semiconductor molecule shows great potential for ambipolar field-effect transistors and non-volatile memory device applications as an important class of materials. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi12030301 |