Loading…

Oxygen‐Bridged Cobalt–Chromium Atomic Pair in MOF‐Derived Cobalt Phosphide Networks as Efficient Active Sites Enabling Synergistic Electrocatalytic Water Splitting in Alkaline Media

Electrochemical water splitting offers a most promising pathway for “green hydrogen” generation. Even so, it remains a struggle to improve the electrocatalytic performance of non‐noble metal catalysts, especially bifunctional electrocatalysts. Herein, aiming to accelerate the hydrogen and oxygen evo...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2024-01, Vol.11 (3), p.e2306678-n/a
Main Authors: Lv, Zepeng, Zhang, Huakui, Liu, Chenhui, Li, Shaolong, Song, Jianxun, He, Jilin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5135-74f9ee0c803059176a8d6b041153d5003a06e9e6959a0ba550ca423fc59d18553
cites cdi_FETCH-LOGICAL-c5135-74f9ee0c803059176a8d6b041153d5003a06e9e6959a0ba550ca423fc59d18553
container_end_page n/a
container_issue 3
container_start_page e2306678
container_title Advanced science
container_volume 11
creator Lv, Zepeng
Zhang, Huakui
Liu, Chenhui
Li, Shaolong
Song, Jianxun
He, Jilin
description Electrochemical water splitting offers a most promising pathway for “green hydrogen” generation. Even so, it remains a struggle to improve the electrocatalytic performance of non‐noble metal catalysts, especially bifunctional electrocatalysts. Herein, aiming to accelerate the hydrogen and oxygen evolution reactions, an oxygen‐bridged cobalt–chromium (Co‐O‐Cr) dual‐sites catalyst anchored on cobalt phosphide synthesized through MOF‐mediation are proposed. By utilizing the filling characteristics of 3d orbitals and modulated local electronic structure of the catalytic active site, the well‐designed catalyst requires only an external voltage of 1.53 V to deliver the current density of 20 mA cm−2 during the process of water splitting apart from the superb HER and OER activity with a low overpotential of 87 and 203 mV at a current density of 10 mA cm−2, respectively. Moreover, density functional theory (DFT) calculations are utilized to unravel mechanistic investigations, including the accelerated adsorption and dissociation process of H2O on the Co‐O‐Cr moiety surface, the down‐shifted d‐band center, a lowered energy barrier for the OER and so on. This work offers a design direction for optimizing catalytic activity toward energy conversion. An effective strategy is suggested to greatly strengthen alkaline bifunctional activity and stability of MOF‐derived Co2P catalyst by introducing the oxygen‐bridged trivalent Cr, achieving directional and accelerated adsorption and dissociation of water molecules and a lowered energy barrier for the OER on oxygen‐bridged Cr‐Co (Co‐O‐Cr) collaborative coordination with strong electron coupling.
doi_str_mv 10.1002/advs.202306678
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f9495b9f7b744dc3a17c8a455d0cdec7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f9495b9f7b744dc3a17c8a455d0cdec7</doaj_id><sourcerecordid>2893834872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5135-74f9ee0c803059176a8d6b041153d5003a06e9e6959a0ba550ca423fc59d18553</originalsourceid><addsrcrecordid>eNqFks9uEzEQh1cIRKvSK0dkiQuXBHtt79rHkKZQqSWVwp-j5bVnE7ebdWo7Lbn1EZB4HN6mT4JDSoS4cBpr9M3nsfUripcEDwnG5Vttb-OwxCXFVVWLJ8VhSaQYUMHY07_OB8VxjFcYY8JpzYh4XhzQWsqaSHZY_Jx-28yhf7j__i44OweLxr7RXXq4_zFeBL906yUapVwNutQuINeji-lpxk8guNs9ji4XPq4WzgL6COnOh-uIdESTtnXGQZ_QyKSMo5lLkNu9bjrXz9Fs00OYu5iyftKBScEbnXS32Ta-6gQBzVadS2kL56tH3bXOg4AuwDr9onjW6i7C8WM9Kj6fTj6NPwzOp-_PxqPzgeGE8kHNWgmAjcAUc0nqSgtbNZiR_B-WY0w1rkBCJbnUuNGcY6NZSVvDpSWCc3pUnO281usrtQpuqcNGee3U74YPc6VD3rgD1UomeSPbuqkZs4ZqUhuhGecWGwumzq43O9cq-Js1xKSWLhroOt2DX0dVCkkFZaIuM_r6H_TKr0OfX6pKSSpKSSllpoY7ygQfY4B2vyDBapsStU2J2qckD7x61K6bJdg9_icTGWA74M51sPmPTo1OvswqITj9BXg1zHA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916331299</pqid></control><display><type>article</type><title>Oxygen‐Bridged Cobalt–Chromium Atomic Pair in MOF‐Derived Cobalt Phosphide Networks as Efficient Active Sites Enabling Synergistic Electrocatalytic Water Splitting in Alkaline Media</title><source>PubMed Central Free</source><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Lv, Zepeng ; Zhang, Huakui ; Liu, Chenhui ; Li, Shaolong ; Song, Jianxun ; He, Jilin</creator><creatorcontrib>Lv, Zepeng ; Zhang, Huakui ; Liu, Chenhui ; Li, Shaolong ; Song, Jianxun ; He, Jilin</creatorcontrib><description>Electrochemical water splitting offers a most promising pathway for “green hydrogen” generation. Even so, it remains a struggle to improve the electrocatalytic performance of non‐noble metal catalysts, especially bifunctional electrocatalysts. Herein, aiming to accelerate the hydrogen and oxygen evolution reactions, an oxygen‐bridged cobalt–chromium (Co‐O‐Cr) dual‐sites catalyst anchored on cobalt phosphide synthesized through MOF‐mediation are proposed. By utilizing the filling characteristics of 3d orbitals and modulated local electronic structure of the catalytic active site, the well‐designed catalyst requires only an external voltage of 1.53 V to deliver the current density of 20 mA cm−2 during the process of water splitting apart from the superb HER and OER activity with a low overpotential of 87 and 203 mV at a current density of 10 mA cm−2, respectively. Moreover, density functional theory (DFT) calculations are utilized to unravel mechanistic investigations, including the accelerated adsorption and dissociation process of H2O on the Co‐O‐Cr moiety surface, the down‐shifted d‐band center, a lowered energy barrier for the OER and so on. This work offers a design direction for optimizing catalytic activity toward energy conversion. An effective strategy is suggested to greatly strengthen alkaline bifunctional activity and stability of MOF‐derived Co2P catalyst by introducing the oxygen‐bridged trivalent Cr, achieving directional and accelerated adsorption and dissociation of water molecules and a lowered energy barrier for the OER on oxygen‐bridged Cr‐Co (Co‐O‐Cr) collaborative coordination with strong electron coupling.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202306678</identifier><identifier>PMID: 37997194</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>bifunctional electrocatalysts ; Cobalt ; electrocatalysis ; Etching ; metal‐organic frameworks ; Morphology ; Nickel ; Spectrum analysis ; synthesis ; water splitting</subject><ispartof>Advanced science, 2024-01, Vol.11 (3), p.e2306678-n/a</ispartof><rights>2023 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Science published by Wiley-VCH GmbH.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5135-74f9ee0c803059176a8d6b041153d5003a06e9e6959a0ba550ca423fc59d18553</citedby><cites>FETCH-LOGICAL-c5135-74f9ee0c803059176a8d6b041153d5003a06e9e6959a0ba550ca423fc59d18553</cites><orcidid>0000-0001-5696-9978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2916331299/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2916331299?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,37013,44590,46052,46476,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37997194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Zepeng</creatorcontrib><creatorcontrib>Zhang, Huakui</creatorcontrib><creatorcontrib>Liu, Chenhui</creatorcontrib><creatorcontrib>Li, Shaolong</creatorcontrib><creatorcontrib>Song, Jianxun</creatorcontrib><creatorcontrib>He, Jilin</creatorcontrib><title>Oxygen‐Bridged Cobalt–Chromium Atomic Pair in MOF‐Derived Cobalt Phosphide Networks as Efficient Active Sites Enabling Synergistic Electrocatalytic Water Splitting in Alkaline Media</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Electrochemical water splitting offers a most promising pathway for “green hydrogen” generation. Even so, it remains a struggle to improve the electrocatalytic performance of non‐noble metal catalysts, especially bifunctional electrocatalysts. Herein, aiming to accelerate the hydrogen and oxygen evolution reactions, an oxygen‐bridged cobalt–chromium (Co‐O‐Cr) dual‐sites catalyst anchored on cobalt phosphide synthesized through MOF‐mediation are proposed. By utilizing the filling characteristics of 3d orbitals and modulated local electronic structure of the catalytic active site, the well‐designed catalyst requires only an external voltage of 1.53 V to deliver the current density of 20 mA cm−2 during the process of water splitting apart from the superb HER and OER activity with a low overpotential of 87 and 203 mV at a current density of 10 mA cm−2, respectively. Moreover, density functional theory (DFT) calculations are utilized to unravel mechanistic investigations, including the accelerated adsorption and dissociation process of H2O on the Co‐O‐Cr moiety surface, the down‐shifted d‐band center, a lowered energy barrier for the OER and so on. This work offers a design direction for optimizing catalytic activity toward energy conversion. An effective strategy is suggested to greatly strengthen alkaline bifunctional activity and stability of MOF‐derived Co2P catalyst by introducing the oxygen‐bridged trivalent Cr, achieving directional and accelerated adsorption and dissociation of water molecules and a lowered energy barrier for the OER on oxygen‐bridged Cr‐Co (Co‐O‐Cr) collaborative coordination with strong electron coupling.</description><subject>bifunctional electrocatalysts</subject><subject>Cobalt</subject><subject>electrocatalysis</subject><subject>Etching</subject><subject>metal‐organic frameworks</subject><subject>Morphology</subject><subject>Nickel</subject><subject>Spectrum analysis</subject><subject>synthesis</subject><subject>water splitting</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks9uEzEQh1cIRKvSK0dkiQuXBHtt79rHkKZQqSWVwp-j5bVnE7ebdWo7Lbn1EZB4HN6mT4JDSoS4cBpr9M3nsfUripcEDwnG5Vttb-OwxCXFVVWLJ8VhSaQYUMHY07_OB8VxjFcYY8JpzYh4XhzQWsqaSHZY_Jx-28yhf7j__i44OweLxr7RXXq4_zFeBL906yUapVwNutQuINeji-lpxk8guNs9ji4XPq4WzgL6COnOh-uIdESTtnXGQZ_QyKSMo5lLkNu9bjrXz9Fs00OYu5iyftKBScEbnXS32Ta-6gQBzVadS2kL56tH3bXOg4AuwDr9onjW6i7C8WM9Kj6fTj6NPwzOp-_PxqPzgeGE8kHNWgmAjcAUc0nqSgtbNZiR_B-WY0w1rkBCJbnUuNGcY6NZSVvDpSWCc3pUnO281usrtQpuqcNGee3U74YPc6VD3rgD1UomeSPbuqkZs4ZqUhuhGecWGwumzq43O9cq-Js1xKSWLhroOt2DX0dVCkkFZaIuM_r6H_TKr0OfX6pKSSpKSSllpoY7ygQfY4B2vyDBapsStU2J2qckD7x61K6bJdg9_icTGWA74M51sPmPTo1OvswqITj9BXg1zHA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Lv, Zepeng</creator><creator>Zhang, Huakui</creator><creator>Liu, Chenhui</creator><creator>Li, Shaolong</creator><creator>Song, Jianxun</creator><creator>He, Jilin</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5696-9978</orcidid></search><sort><creationdate>20240101</creationdate><title>Oxygen‐Bridged Cobalt–Chromium Atomic Pair in MOF‐Derived Cobalt Phosphide Networks as Efficient Active Sites Enabling Synergistic Electrocatalytic Water Splitting in Alkaline Media</title><author>Lv, Zepeng ; Zhang, Huakui ; Liu, Chenhui ; Li, Shaolong ; Song, Jianxun ; He, Jilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5135-74f9ee0c803059176a8d6b041153d5003a06e9e6959a0ba550ca423fc59d18553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bifunctional electrocatalysts</topic><topic>Cobalt</topic><topic>electrocatalysis</topic><topic>Etching</topic><topic>metal‐organic frameworks</topic><topic>Morphology</topic><topic>Nickel</topic><topic>Spectrum analysis</topic><topic>synthesis</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Zepeng</creatorcontrib><creatorcontrib>Zhang, Huakui</creatorcontrib><creatorcontrib>Liu, Chenhui</creatorcontrib><creatorcontrib>Li, Shaolong</creatorcontrib><creatorcontrib>Song, Jianxun</creatorcontrib><creatorcontrib>He, Jilin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Archive</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Zepeng</au><au>Zhang, Huakui</au><au>Liu, Chenhui</au><au>Li, Shaolong</au><au>Song, Jianxun</au><au>He, Jilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen‐Bridged Cobalt–Chromium Atomic Pair in MOF‐Derived Cobalt Phosphide Networks as Efficient Active Sites Enabling Synergistic Electrocatalytic Water Splitting in Alkaline Media</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>11</volume><issue>3</issue><spage>e2306678</spage><epage>n/a</epage><pages>e2306678-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Electrochemical water splitting offers a most promising pathway for “green hydrogen” generation. Even so, it remains a struggle to improve the electrocatalytic performance of non‐noble metal catalysts, especially bifunctional electrocatalysts. Herein, aiming to accelerate the hydrogen and oxygen evolution reactions, an oxygen‐bridged cobalt–chromium (Co‐O‐Cr) dual‐sites catalyst anchored on cobalt phosphide synthesized through MOF‐mediation are proposed. By utilizing the filling characteristics of 3d orbitals and modulated local electronic structure of the catalytic active site, the well‐designed catalyst requires only an external voltage of 1.53 V to deliver the current density of 20 mA cm−2 during the process of water splitting apart from the superb HER and OER activity with a low overpotential of 87 and 203 mV at a current density of 10 mA cm−2, respectively. Moreover, density functional theory (DFT) calculations are utilized to unravel mechanistic investigations, including the accelerated adsorption and dissociation process of H2O on the Co‐O‐Cr moiety surface, the down‐shifted d‐band center, a lowered energy barrier for the OER and so on. This work offers a design direction for optimizing catalytic activity toward energy conversion. An effective strategy is suggested to greatly strengthen alkaline bifunctional activity and stability of MOF‐derived Co2P catalyst by introducing the oxygen‐bridged trivalent Cr, achieving directional and accelerated adsorption and dissociation of water molecules and a lowered energy barrier for the OER on oxygen‐bridged Cr‐Co (Co‐O‐Cr) collaborative coordination with strong electron coupling.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37997194</pmid><doi>10.1002/advs.202306678</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5696-9978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2024-01, Vol.11 (3), p.e2306678-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f9495b9f7b744dc3a17c8a455d0cdec7
source PubMed Central Free; Wiley Online Library Open Access; Publicly Available Content Database
subjects bifunctional electrocatalysts
Cobalt
electrocatalysis
Etching
metal‐organic frameworks
Morphology
Nickel
Spectrum analysis
synthesis
water splitting
title Oxygen‐Bridged Cobalt–Chromium Atomic Pair in MOF‐Derived Cobalt Phosphide Networks as Efficient Active Sites Enabling Synergistic Electrocatalytic Water Splitting in Alkaline Media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%E2%80%90Bridged%20Cobalt%E2%80%93Chromium%20Atomic%20Pair%20in%20MOF%E2%80%90Derived%20Cobalt%20Phosphide%20Networks%20as%20Efficient%20Active%20Sites%20Enabling%20Synergistic%20Electrocatalytic%20Water%20Splitting%20in%20Alkaline%20Media&rft.jtitle=Advanced%20science&rft.au=Lv,%20Zepeng&rft.date=2024-01-01&rft.volume=11&rft.issue=3&rft.spage=e2306678&rft.epage=n/a&rft.pages=e2306678-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202306678&rft_dat=%3Cproquest_doaj_%3E2893834872%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5135-74f9ee0c803059176a8d6b041153d5003a06e9e6959a0ba550ca423fc59d18553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2916331299&rft_id=info:pmid/37997194&rfr_iscdi=true