Loading…
Development of Attached Cavitation at Very Low Reynolds Numbers from Partial to Super-Cavitation
The present study focuses on the inception, the growth, and the potential unsteady dynamics of attached vapor cavities into laminar separation bubbles. A viscous silicon oil has been used in a Venturi geometry to explore the flow for Reynolds numbers ranging from Re=800 to Re=2000. Special care has...
Saved in:
Published in: | Applied sciences 2020-10, Vol.10 (20), p.7350 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53 |
---|---|
cites | cdi_FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53 |
container_end_page | |
container_issue | 20 |
container_start_page | 7350 |
container_title | Applied sciences |
container_volume | 10 |
creator | Ravelet, Florent Danlos, Amélie Bakir, Farid Croci, Kilian Khelladi, Sofiane Sarraf, Christophe |
description | The present study focuses on the inception, the growth, and the potential unsteady dynamics of attached vapor cavities into laminar separation bubbles. A viscous silicon oil has been used in a Venturi geometry to explore the flow for Reynolds numbers ranging from Re=800 to Re=2000. Special care has been taken to extract the maximum amount of dissolved air. At the lowest Reynolds numbers the cavities are steady and grow regularly with decreasing ambient pressure. A transition takes place between Re=1200 and Re=1400 for which different dynamical regimes are identified: a steady regime for tiny cavities, a periodical regime of attached cavity shrinking characterized by a very small Strouhal number for cavities of intermediate sizes, the bursting of aperiodical cavitational vortices which further lower the pressure, and finally steady super-cavitating sheets observed at the lowest of pressures. The growth of the cavity with the decrease of the cavitation number also becomes steeper. This scenario is then well established and similar for Reynolds numbers between Re=1400 and Re=2000. |
doi_str_mv | 10.3390/app10207350 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f952b617c2194e7189a8ba38fd6a98a5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641751642</galeid><doaj_id>oai_doaj_org_article_f952b617c2194e7189a8ba38fd6a98a5</doaj_id><sourcerecordid>A641751642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53</originalsourceid><addsrcrecordid>eNpVUdtq3DAUNKWFhCRP_QFBn0pxqot1e1y2TRNYmtKGvirHuiRebMuVtVv276uNS5scPZzDMDOMmKp6S_AlYxp_hGkimGLJOH5VnZZD1Kwh8vWz-6S6mOctLqMJUwSfVvef_N73cRr8mFEMaJUz2Efv0Br2XYbcxRFBRj99OqBN_I2--8MYezejr7uh9WlGIcUBfYOUO-hRjujHbvKp_q8-r94E6Gd_8XefVXdXn-_W1_Xm9svNerWpbcNkrrltVOACmkYG2bai5U7SlotAiBPWc8fAKo2V5Yw2rdPCyWCF9k4ECI6zs-pmsXURtmZK3QDpYCJ05gmI6cEcM9rem6A5bQWRlhLdeEmUBtUCU8EJ0AqOXu8Xr0foX1hdrzbmiGGqJWFS7Unhvlu4U4q_dn7OZht3aSw_NZSzBhNCsSisy4X1ACVAN4aYE9jynB86G0cfuoKvRKmIE9HQIviwCGyK85x8-JeDYHNs2zxrm_0BXHqbbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534011206</pqid></control><display><type>article</type><title>Development of Attached Cavitation at Very Low Reynolds Numbers from Partial to Super-Cavitation</title><source>Publicly Available Content Database</source><creator>Ravelet, Florent ; Danlos, Amélie ; Bakir, Farid ; Croci, Kilian ; Khelladi, Sofiane ; Sarraf, Christophe</creator><creatorcontrib>Ravelet, Florent ; Danlos, Amélie ; Bakir, Farid ; Croci, Kilian ; Khelladi, Sofiane ; Sarraf, Christophe</creatorcontrib><description>The present study focuses on the inception, the growth, and the potential unsteady dynamics of attached vapor cavities into laminar separation bubbles. A viscous silicon oil has been used in a Venturi geometry to explore the flow for Reynolds numbers ranging from Re=800 to Re=2000. Special care has been taken to extract the maximum amount of dissolved air. At the lowest Reynolds numbers the cavities are steady and grow regularly with decreasing ambient pressure. A transition takes place between Re=1200 and Re=1400 for which different dynamical regimes are identified: a steady regime for tiny cavities, a periodical regime of attached cavity shrinking characterized by a very small Strouhal number for cavities of intermediate sizes, the bursting of aperiodical cavitational vortices which further lower the pressure, and finally steady super-cavitating sheets observed at the lowest of pressures. The growth of the cavity with the decrease of the cavitation number also becomes steeper. This scenario is then well established and similar for Reynolds numbers between Re=1400 and Re=2000.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10207350</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerodynamics ; Boundary layer ; Cameras ; Cavitation ; cavitation instabilities ; Cavitation number ; Cavities ; Experiments ; Fluid Dynamics ; Fluid flow ; Holes ; Laboratories ; laminar cavitation ; Laminar flow ; Mechanical properties ; partial cavitation ; Physics ; Pressure ; Reynolds number ; Strouhal number ; super-cavitation ; Supercavitating flow ; Time series ; Velocity ; Viscosity</subject><ispartof>Applied sciences, 2020-10, Vol.10 (20), p.7350</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53</citedby><cites>FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53</cites><orcidid>0000-0002-1987-5558 ; 0000-0003-0837-0260 ; 0000-0002-2095-1087 ; 0000-0001-6773-3557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2534011206/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2534011206?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02971378$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravelet, Florent</creatorcontrib><creatorcontrib>Danlos, Amélie</creatorcontrib><creatorcontrib>Bakir, Farid</creatorcontrib><creatorcontrib>Croci, Kilian</creatorcontrib><creatorcontrib>Khelladi, Sofiane</creatorcontrib><creatorcontrib>Sarraf, Christophe</creatorcontrib><title>Development of Attached Cavitation at Very Low Reynolds Numbers from Partial to Super-Cavitation</title><title>Applied sciences</title><description>The present study focuses on the inception, the growth, and the potential unsteady dynamics of attached vapor cavities into laminar separation bubbles. A viscous silicon oil has been used in a Venturi geometry to explore the flow for Reynolds numbers ranging from Re=800 to Re=2000. Special care has been taken to extract the maximum amount of dissolved air. At the lowest Reynolds numbers the cavities are steady and grow regularly with decreasing ambient pressure. A transition takes place between Re=1200 and Re=1400 for which different dynamical regimes are identified: a steady regime for tiny cavities, a periodical regime of attached cavity shrinking characterized by a very small Strouhal number for cavities of intermediate sizes, the bursting of aperiodical cavitational vortices which further lower the pressure, and finally steady super-cavitating sheets observed at the lowest of pressures. The growth of the cavity with the decrease of the cavitation number also becomes steeper. This scenario is then well established and similar for Reynolds numbers between Re=1400 and Re=2000.</description><subject>Aerodynamics</subject><subject>Boundary layer</subject><subject>Cameras</subject><subject>Cavitation</subject><subject>cavitation instabilities</subject><subject>Cavitation number</subject><subject>Cavities</subject><subject>Experiments</subject><subject>Fluid Dynamics</subject><subject>Fluid flow</subject><subject>Holes</subject><subject>Laboratories</subject><subject>laminar cavitation</subject><subject>Laminar flow</subject><subject>Mechanical properties</subject><subject>partial cavitation</subject><subject>Physics</subject><subject>Pressure</subject><subject>Reynolds number</subject><subject>Strouhal number</subject><subject>super-cavitation</subject><subject>Supercavitating flow</subject><subject>Time series</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUdtq3DAUNKWFhCRP_QFBn0pxqot1e1y2TRNYmtKGvirHuiRebMuVtVv276uNS5scPZzDMDOMmKp6S_AlYxp_hGkimGLJOH5VnZZD1Kwh8vWz-6S6mOctLqMJUwSfVvef_N73cRr8mFEMaJUz2Efv0Br2XYbcxRFBRj99OqBN_I2--8MYezejr7uh9WlGIcUBfYOUO-hRjujHbvKp_q8-r94E6Gd_8XefVXdXn-_W1_Xm9svNerWpbcNkrrltVOACmkYG2bai5U7SlotAiBPWc8fAKo2V5Yw2rdPCyWCF9k4ECI6zs-pmsXURtmZK3QDpYCJ05gmI6cEcM9rem6A5bQWRlhLdeEmUBtUCU8EJ0AqOXu8Xr0foX1hdrzbmiGGqJWFS7Unhvlu4U4q_dn7OZht3aSw_NZSzBhNCsSisy4X1ACVAN4aYE9jynB86G0cfuoKvRKmIE9HQIviwCGyK85x8-JeDYHNs2zxrm_0BXHqbbg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ravelet, Florent</creator><creator>Danlos, Amélie</creator><creator>Bakir, Farid</creator><creator>Croci, Kilian</creator><creator>Khelladi, Sofiane</creator><creator>Sarraf, Christophe</creator><general>MDPI AG</general><general>Multidisciplinary digital publishing institute (MDPI)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1987-5558</orcidid><orcidid>https://orcid.org/0000-0003-0837-0260</orcidid><orcidid>https://orcid.org/0000-0002-2095-1087</orcidid><orcidid>https://orcid.org/0000-0001-6773-3557</orcidid></search><sort><creationdate>20201001</creationdate><title>Development of Attached Cavitation at Very Low Reynolds Numbers from Partial to Super-Cavitation</title><author>Ravelet, Florent ; Danlos, Amélie ; Bakir, Farid ; Croci, Kilian ; Khelladi, Sofiane ; Sarraf, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Boundary layer</topic><topic>Cameras</topic><topic>Cavitation</topic><topic>cavitation instabilities</topic><topic>Cavitation number</topic><topic>Cavities</topic><topic>Experiments</topic><topic>Fluid Dynamics</topic><topic>Fluid flow</topic><topic>Holes</topic><topic>Laboratories</topic><topic>laminar cavitation</topic><topic>Laminar flow</topic><topic>Mechanical properties</topic><topic>partial cavitation</topic><topic>Physics</topic><topic>Pressure</topic><topic>Reynolds number</topic><topic>Strouhal number</topic><topic>super-cavitation</topic><topic>Supercavitating flow</topic><topic>Time series</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravelet, Florent</creatorcontrib><creatorcontrib>Danlos, Amélie</creatorcontrib><creatorcontrib>Bakir, Farid</creatorcontrib><creatorcontrib>Croci, Kilian</creatorcontrib><creatorcontrib>Khelladi, Sofiane</creatorcontrib><creatorcontrib>Sarraf, Christophe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravelet, Florent</au><au>Danlos, Amélie</au><au>Bakir, Farid</au><au>Croci, Kilian</au><au>Khelladi, Sofiane</au><au>Sarraf, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Attached Cavitation at Very Low Reynolds Numbers from Partial to Super-Cavitation</atitle><jtitle>Applied sciences</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>10</volume><issue>20</issue><spage>7350</spage><pages>7350-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The present study focuses on the inception, the growth, and the potential unsteady dynamics of attached vapor cavities into laminar separation bubbles. A viscous silicon oil has been used in a Venturi geometry to explore the flow for Reynolds numbers ranging from Re=800 to Re=2000. Special care has been taken to extract the maximum amount of dissolved air. At the lowest Reynolds numbers the cavities are steady and grow regularly with decreasing ambient pressure. A transition takes place between Re=1200 and Re=1400 for which different dynamical regimes are identified: a steady regime for tiny cavities, a periodical regime of attached cavity shrinking characterized by a very small Strouhal number for cavities of intermediate sizes, the bursting of aperiodical cavitational vortices which further lower the pressure, and finally steady super-cavitating sheets observed at the lowest of pressures. The growth of the cavity with the decrease of the cavitation number also becomes steeper. This scenario is then well established and similar for Reynolds numbers between Re=1400 and Re=2000.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10207350</doi><orcidid>https://orcid.org/0000-0002-1987-5558</orcidid><orcidid>https://orcid.org/0000-0003-0837-0260</orcidid><orcidid>https://orcid.org/0000-0002-2095-1087</orcidid><orcidid>https://orcid.org/0000-0001-6773-3557</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2020-10, Vol.10 (20), p.7350 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f952b617c2194e7189a8ba38fd6a98a5 |
source | Publicly Available Content Database |
subjects | Aerodynamics Boundary layer Cameras Cavitation cavitation instabilities Cavitation number Cavities Experiments Fluid Dynamics Fluid flow Holes Laboratories laminar cavitation Laminar flow Mechanical properties partial cavitation Physics Pressure Reynolds number Strouhal number super-cavitation Supercavitating flow Time series Velocity Viscosity |
title | Development of Attached Cavitation at Very Low Reynolds Numbers from Partial to Super-Cavitation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Attached%20Cavitation%20at%20Very%20Low%20Reynolds%20Numbers%20from%20Partial%20to%20Super-Cavitation&rft.jtitle=Applied%20sciences&rft.au=Ravelet,%20Florent&rft.date=2020-10-01&rft.volume=10&rft.issue=20&rft.spage=7350&rft.pages=7350-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10207350&rft_dat=%3Cgale_doaj_%3EA641751642%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2534011206&rft_id=info:pmid/&rft_galeid=A641751642&rfr_iscdi=true |