Loading…

Development of Attached Cavitation at Very Low Reynolds Numbers from Partial to Super-Cavitation

The present study focuses on the inception, the growth, and the potential unsteady dynamics of attached vapor cavities into laminar separation bubbles. A viscous silicon oil has been used in a Venturi geometry to explore the flow for Reynolds numbers ranging from Re=800 to Re=2000. Special care has...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-10, Vol.10 (20), p.7350
Main Authors: Ravelet, Florent, Danlos, Amélie, Bakir, Farid, Croci, Kilian, Khelladi, Sofiane, Sarraf, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53
cites cdi_FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53
container_end_page
container_issue 20
container_start_page 7350
container_title Applied sciences
container_volume 10
creator Ravelet, Florent
Danlos, Amélie
Bakir, Farid
Croci, Kilian
Khelladi, Sofiane
Sarraf, Christophe
description The present study focuses on the inception, the growth, and the potential unsteady dynamics of attached vapor cavities into laminar separation bubbles. A viscous silicon oil has been used in a Venturi geometry to explore the flow for Reynolds numbers ranging from Re=800 to Re=2000. Special care has been taken to extract the maximum amount of dissolved air. At the lowest Reynolds numbers the cavities are steady and grow regularly with decreasing ambient pressure. A transition takes place between Re=1200 and Re=1400 for which different dynamical regimes are identified: a steady regime for tiny cavities, a periodical regime of attached cavity shrinking characterized by a very small Strouhal number for cavities of intermediate sizes, the bursting of aperiodical cavitational vortices which further lower the pressure, and finally steady super-cavitating sheets observed at the lowest of pressures. The growth of the cavity with the decrease of the cavitation number also becomes steeper. This scenario is then well established and similar for Reynolds numbers between Re=1400 and Re=2000.
doi_str_mv 10.3390/app10207350
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f952b617c2194e7189a8ba38fd6a98a5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641751642</galeid><doaj_id>oai_doaj_org_article_f952b617c2194e7189a8ba38fd6a98a5</doaj_id><sourcerecordid>A641751642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53</originalsourceid><addsrcrecordid>eNpVUdtq3DAUNKWFhCRP_QFBn0pxqot1e1y2TRNYmtKGvirHuiRebMuVtVv276uNS5scPZzDMDOMmKp6S_AlYxp_hGkimGLJOH5VnZZD1Kwh8vWz-6S6mOctLqMJUwSfVvef_N73cRr8mFEMaJUz2Efv0Br2XYbcxRFBRj99OqBN_I2--8MYezejr7uh9WlGIcUBfYOUO-hRjujHbvKp_q8-r94E6Gd_8XefVXdXn-_W1_Xm9svNerWpbcNkrrltVOACmkYG2bai5U7SlotAiBPWc8fAKo2V5Yw2rdPCyWCF9k4ECI6zs-pmsXURtmZK3QDpYCJ05gmI6cEcM9rem6A5bQWRlhLdeEmUBtUCU8EJ0AqOXu8Xr0foX1hdrzbmiGGqJWFS7Unhvlu4U4q_dn7OZht3aSw_NZSzBhNCsSisy4X1ACVAN4aYE9jynB86G0cfuoKvRKmIE9HQIviwCGyK85x8-JeDYHNs2zxrm_0BXHqbbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534011206</pqid></control><display><type>article</type><title>Development of Attached Cavitation at Very Low Reynolds Numbers from Partial to Super-Cavitation</title><source>Publicly Available Content Database</source><creator>Ravelet, Florent ; Danlos, Amélie ; Bakir, Farid ; Croci, Kilian ; Khelladi, Sofiane ; Sarraf, Christophe</creator><creatorcontrib>Ravelet, Florent ; Danlos, Amélie ; Bakir, Farid ; Croci, Kilian ; Khelladi, Sofiane ; Sarraf, Christophe</creatorcontrib><description>The present study focuses on the inception, the growth, and the potential unsteady dynamics of attached vapor cavities into laminar separation bubbles. A viscous silicon oil has been used in a Venturi geometry to explore the flow for Reynolds numbers ranging from Re=800 to Re=2000. Special care has been taken to extract the maximum amount of dissolved air. At the lowest Reynolds numbers the cavities are steady and grow regularly with decreasing ambient pressure. A transition takes place between Re=1200 and Re=1400 for which different dynamical regimes are identified: a steady regime for tiny cavities, a periodical regime of attached cavity shrinking characterized by a very small Strouhal number for cavities of intermediate sizes, the bursting of aperiodical cavitational vortices which further lower the pressure, and finally steady super-cavitating sheets observed at the lowest of pressures. The growth of the cavity with the decrease of the cavitation number also becomes steeper. This scenario is then well established and similar for Reynolds numbers between Re=1400 and Re=2000.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10207350</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerodynamics ; Boundary layer ; Cameras ; Cavitation ; cavitation instabilities ; Cavitation number ; Cavities ; Experiments ; Fluid Dynamics ; Fluid flow ; Holes ; Laboratories ; laminar cavitation ; Laminar flow ; Mechanical properties ; partial cavitation ; Physics ; Pressure ; Reynolds number ; Strouhal number ; super-cavitation ; Supercavitating flow ; Time series ; Velocity ; Viscosity</subject><ispartof>Applied sciences, 2020-10, Vol.10 (20), p.7350</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53</citedby><cites>FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53</cites><orcidid>0000-0002-1987-5558 ; 0000-0003-0837-0260 ; 0000-0002-2095-1087 ; 0000-0001-6773-3557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2534011206/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2534011206?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02971378$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravelet, Florent</creatorcontrib><creatorcontrib>Danlos, Amélie</creatorcontrib><creatorcontrib>Bakir, Farid</creatorcontrib><creatorcontrib>Croci, Kilian</creatorcontrib><creatorcontrib>Khelladi, Sofiane</creatorcontrib><creatorcontrib>Sarraf, Christophe</creatorcontrib><title>Development of Attached Cavitation at Very Low Reynolds Numbers from Partial to Super-Cavitation</title><title>Applied sciences</title><description>The present study focuses on the inception, the growth, and the potential unsteady dynamics of attached vapor cavities into laminar separation bubbles. A viscous silicon oil has been used in a Venturi geometry to explore the flow for Reynolds numbers ranging from Re=800 to Re=2000. Special care has been taken to extract the maximum amount of dissolved air. At the lowest Reynolds numbers the cavities are steady and grow regularly with decreasing ambient pressure. A transition takes place between Re=1200 and Re=1400 for which different dynamical regimes are identified: a steady regime for tiny cavities, a periodical regime of attached cavity shrinking characterized by a very small Strouhal number for cavities of intermediate sizes, the bursting of aperiodical cavitational vortices which further lower the pressure, and finally steady super-cavitating sheets observed at the lowest of pressures. The growth of the cavity with the decrease of the cavitation number also becomes steeper. This scenario is then well established and similar for Reynolds numbers between Re=1400 and Re=2000.</description><subject>Aerodynamics</subject><subject>Boundary layer</subject><subject>Cameras</subject><subject>Cavitation</subject><subject>cavitation instabilities</subject><subject>Cavitation number</subject><subject>Cavities</subject><subject>Experiments</subject><subject>Fluid Dynamics</subject><subject>Fluid flow</subject><subject>Holes</subject><subject>Laboratories</subject><subject>laminar cavitation</subject><subject>Laminar flow</subject><subject>Mechanical properties</subject><subject>partial cavitation</subject><subject>Physics</subject><subject>Pressure</subject><subject>Reynolds number</subject><subject>Strouhal number</subject><subject>super-cavitation</subject><subject>Supercavitating flow</subject><subject>Time series</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUdtq3DAUNKWFhCRP_QFBn0pxqot1e1y2TRNYmtKGvirHuiRebMuVtVv276uNS5scPZzDMDOMmKp6S_AlYxp_hGkimGLJOH5VnZZD1Kwh8vWz-6S6mOctLqMJUwSfVvef_N73cRr8mFEMaJUz2Efv0Br2XYbcxRFBRj99OqBN_I2--8MYezejr7uh9WlGIcUBfYOUO-hRjujHbvKp_q8-r94E6Gd_8XefVXdXn-_W1_Xm9svNerWpbcNkrrltVOACmkYG2bai5U7SlotAiBPWc8fAKo2V5Yw2rdPCyWCF9k4ECI6zs-pmsXURtmZK3QDpYCJ05gmI6cEcM9rem6A5bQWRlhLdeEmUBtUCU8EJ0AqOXu8Xr0foX1hdrzbmiGGqJWFS7Unhvlu4U4q_dn7OZht3aSw_NZSzBhNCsSisy4X1ACVAN4aYE9jynB86G0cfuoKvRKmIE9HQIviwCGyK85x8-JeDYHNs2zxrm_0BXHqbbg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ravelet, Florent</creator><creator>Danlos, Amélie</creator><creator>Bakir, Farid</creator><creator>Croci, Kilian</creator><creator>Khelladi, Sofiane</creator><creator>Sarraf, Christophe</creator><general>MDPI AG</general><general>Multidisciplinary digital publishing institute (MDPI)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1987-5558</orcidid><orcidid>https://orcid.org/0000-0003-0837-0260</orcidid><orcidid>https://orcid.org/0000-0002-2095-1087</orcidid><orcidid>https://orcid.org/0000-0001-6773-3557</orcidid></search><sort><creationdate>20201001</creationdate><title>Development of Attached Cavitation at Very Low Reynolds Numbers from Partial to Super-Cavitation</title><author>Ravelet, Florent ; Danlos, Amélie ; Bakir, Farid ; Croci, Kilian ; Khelladi, Sofiane ; Sarraf, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Boundary layer</topic><topic>Cameras</topic><topic>Cavitation</topic><topic>cavitation instabilities</topic><topic>Cavitation number</topic><topic>Cavities</topic><topic>Experiments</topic><topic>Fluid Dynamics</topic><topic>Fluid flow</topic><topic>Holes</topic><topic>Laboratories</topic><topic>laminar cavitation</topic><topic>Laminar flow</topic><topic>Mechanical properties</topic><topic>partial cavitation</topic><topic>Physics</topic><topic>Pressure</topic><topic>Reynolds number</topic><topic>Strouhal number</topic><topic>super-cavitation</topic><topic>Supercavitating flow</topic><topic>Time series</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravelet, Florent</creatorcontrib><creatorcontrib>Danlos, Amélie</creatorcontrib><creatorcontrib>Bakir, Farid</creatorcontrib><creatorcontrib>Croci, Kilian</creatorcontrib><creatorcontrib>Khelladi, Sofiane</creatorcontrib><creatorcontrib>Sarraf, Christophe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravelet, Florent</au><au>Danlos, Amélie</au><au>Bakir, Farid</au><au>Croci, Kilian</au><au>Khelladi, Sofiane</au><au>Sarraf, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Attached Cavitation at Very Low Reynolds Numbers from Partial to Super-Cavitation</atitle><jtitle>Applied sciences</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>10</volume><issue>20</issue><spage>7350</spage><pages>7350-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The present study focuses on the inception, the growth, and the potential unsteady dynamics of attached vapor cavities into laminar separation bubbles. A viscous silicon oil has been used in a Venturi geometry to explore the flow for Reynolds numbers ranging from Re=800 to Re=2000. Special care has been taken to extract the maximum amount of dissolved air. At the lowest Reynolds numbers the cavities are steady and grow regularly with decreasing ambient pressure. A transition takes place between Re=1200 and Re=1400 for which different dynamical regimes are identified: a steady regime for tiny cavities, a periodical regime of attached cavity shrinking characterized by a very small Strouhal number for cavities of intermediate sizes, the bursting of aperiodical cavitational vortices which further lower the pressure, and finally steady super-cavitating sheets observed at the lowest of pressures. The growth of the cavity with the decrease of the cavitation number also becomes steeper. This scenario is then well established and similar for Reynolds numbers between Re=1400 and Re=2000.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10207350</doi><orcidid>https://orcid.org/0000-0002-1987-5558</orcidid><orcidid>https://orcid.org/0000-0003-0837-0260</orcidid><orcidid>https://orcid.org/0000-0002-2095-1087</orcidid><orcidid>https://orcid.org/0000-0001-6773-3557</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2020-10, Vol.10 (20), p.7350
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f952b617c2194e7189a8ba38fd6a98a5
source Publicly Available Content Database
subjects Aerodynamics
Boundary layer
Cameras
Cavitation
cavitation instabilities
Cavitation number
Cavities
Experiments
Fluid Dynamics
Fluid flow
Holes
Laboratories
laminar cavitation
Laminar flow
Mechanical properties
partial cavitation
Physics
Pressure
Reynolds number
Strouhal number
super-cavitation
Supercavitating flow
Time series
Velocity
Viscosity
title Development of Attached Cavitation at Very Low Reynolds Numbers from Partial to Super-Cavitation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Attached%20Cavitation%20at%20Very%20Low%20Reynolds%20Numbers%20from%20Partial%20to%20Super-Cavitation&rft.jtitle=Applied%20sciences&rft.au=Ravelet,%20Florent&rft.date=2020-10-01&rft.volume=10&rft.issue=20&rft.spage=7350&rft.pages=7350-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10207350&rft_dat=%3Cgale_doaj_%3EA641751642%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-5c48f56a447f7bb6b5d72b56f11d6ce5d3ac8908c5324bd96d7fc69ed6fafd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2534011206&rft_id=info:pmid/&rft_galeid=A641751642&rfr_iscdi=true