Loading…

Rotating black holes in a viable Lorentz-violating gravity: finding exact solutions without tears

We introduce a two-step procedure for finding Kerr-type rotating black hole solutions without tears. Considering the low-energy sector of Hořava gravity as a viable Lorentz-violating gravity in four dimensions which admits a different speed of gravity, we find the exact rotating black hole solutions...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Particles and fields, 2024-08, Vol.84 (8), p.852-13, Article 852
Main Authors: Devecioğlu, Deniz O., Park, Mu-In
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c325t-a165f41eb05a7ef3665774ee46167e09709c4680abf0391d65a40f66ec121f373
container_end_page 13
container_issue 8
container_start_page 852
container_title The European physical journal. C, Particles and fields
container_volume 84
creator Devecioğlu, Deniz O.
Park, Mu-In
description We introduce a two-step procedure for finding Kerr-type rotating black hole solutions without tears. Considering the low-energy sector of Hořava gravity as a viable Lorentz-violating gravity in four dimensions which admits a different speed of gravity, we find the exact rotating black hole solutions (with or without cosmological constant). We find that the singular region extends to r < 0 region from the ring singularity at r = 0 in Boyer–Lindquist coordinates. There are two Killing horizons where g rr = 0 and the black hole thermodynamics laws are still valid. We find the rotating black hole solutions with electromagnetic charges only when we consider the noble electromagnetic couplings, in such a way that the speed of light is the same as the speed of gravity. With the noble choice of couplings, our Lorentz-violating gravity can be consistent with the recently-observed time delay of the coincident GW and GRB signals. Furthermore, in Appendices, we show that (a) the uniqueness of the invariant line element d s 2 under the foliation-preserving diffeomorphism Diff F , contrary to Lorentz-violating action, (b) the solutions are the Petrov type I with four distinct principal null vectors, and (c) the Hamilton-Jacobi equation for the geodesic particles are not separable.
doi_str_mv 10.1140/epjc/s10052-024-13209-3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f962488030ee467bb86094b6ced167da</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f962488030ee467bb86094b6ced167da</doaj_id><sourcerecordid>3096594692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-a165f41eb05a7ef3665774ee46167e09709c4680abf0391d65a40f66ec121f373</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEEqX0N9RSz6Hj2HHi3qqKlkorIaH2bE2c8dZLiLe2d6H99XgbRLlxmtHTe99YflV1yuET5xLOabux54kDtE0Njay5aEDX4k11xKWQtSr623_299WHlDYAxQr9UYXfQsbs5zUbJrTf2UOYKDE_M2R7j8NEbBUizfm53vswLc51xL3PTxfM-Xk8CPQLbWYpTLvsw5zYT58fwi6zTBjTx-qdwynRyZ95XN1ff767-lKvvt7cXl2uaiuaNtfIVeskpwFa7MgJpdquk0RScdUR6A60laoHHBwIzUfVogSnFFnecCc6cVzdLtwx4MZso_-B8ckE9OZFCHFtMGZvJzJOq0b2PQg48Lth6BVoOShLYzk2YmGdLaxtDI87Stlswi7O5flGgFatlko3xdUtLhtDSpHc36sczKEbc-jGLN2Y8uHmpRsjSrJfkqkk5jXFV_7_or8B5X6VVg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096594692</pqid></control><display><type>article</type><title>Rotating black holes in a viable Lorentz-violating gravity: finding exact solutions without tears</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Devecioğlu, Deniz O. ; Park, Mu-In</creator><creatorcontrib>Devecioğlu, Deniz O. ; Park, Mu-In</creatorcontrib><description>We introduce a two-step procedure for finding Kerr-type rotating black hole solutions without tears. Considering the low-energy sector of Hořava gravity as a viable Lorentz-violating gravity in four dimensions which admits a different speed of gravity, we find the exact rotating black hole solutions (with or without cosmological constant). We find that the singular region extends to r &lt; 0 region from the ring singularity at r = 0 in Boyer–Lindquist coordinates. There are two Killing horizons where g rr = 0 and the black hole thermodynamics laws are still valid. We find the rotating black hole solutions with electromagnetic charges only when we consider the noble electromagnetic couplings, in such a way that the speed of light is the same as the speed of gravity. With the noble choice of couplings, our Lorentz-violating gravity can be consistent with the recently-observed time delay of the coincident GW and GRB signals. Furthermore, in Appendices, we show that (a) the uniqueness of the invariant line element d s 2 under the foliation-preserving diffeomorphism Diff F , contrary to Lorentz-violating action, (b) the solutions are the Petrov type I with four distinct principal null vectors, and (c) the Hamilton-Jacobi equation for the geodesic particles are not separable.</description><identifier>ISSN: 1434-6052</identifier><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-024-13209-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Black holes ; Cosmological constant ; Couplings ; Elementary Particles ; Exact solutions ; Hadrons ; Hamilton-Jacobi equation ; Heavy Ions ; Isomorphism ; Light speed ; Measurement Science and Instrumentation ; Nuclear Energy ; Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Regular Article – Theoretical Physics ; Rotation ; String Theory</subject><ispartof>The European physical journal. C, Particles and fields, 2024-08, Vol.84 (8), p.852-13, Article 852</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-a165f41eb05a7ef3665774ee46167e09709c4680abf0391d65a40f66ec121f373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3096594692/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3096594692?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Devecioğlu, Deniz O.</creatorcontrib><creatorcontrib>Park, Mu-In</creatorcontrib><title>Rotating black holes in a viable Lorentz-violating gravity: finding exact solutions without tears</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>We introduce a two-step procedure for finding Kerr-type rotating black hole solutions without tears. Considering the low-energy sector of Hořava gravity as a viable Lorentz-violating gravity in four dimensions which admits a different speed of gravity, we find the exact rotating black hole solutions (with or without cosmological constant). We find that the singular region extends to r &lt; 0 region from the ring singularity at r = 0 in Boyer–Lindquist coordinates. There are two Killing horizons where g rr = 0 and the black hole thermodynamics laws are still valid. We find the rotating black hole solutions with electromagnetic charges only when we consider the noble electromagnetic couplings, in such a way that the speed of light is the same as the speed of gravity. With the noble choice of couplings, our Lorentz-violating gravity can be consistent with the recently-observed time delay of the coincident GW and GRB signals. Furthermore, in Appendices, we show that (a) the uniqueness of the invariant line element d s 2 under the foliation-preserving diffeomorphism Diff F , contrary to Lorentz-violating action, (b) the solutions are the Petrov type I with four distinct principal null vectors, and (c) the Hamilton-Jacobi equation for the geodesic particles are not separable.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Black holes</subject><subject>Cosmological constant</subject><subject>Couplings</subject><subject>Elementary Particles</subject><subject>Exact solutions</subject><subject>Hadrons</subject><subject>Hamilton-Jacobi equation</subject><subject>Heavy Ions</subject><subject>Isomorphism</subject><subject>Light speed</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article – Theoretical Physics</subject><subject>Rotation</subject><subject>String Theory</subject><issn>1434-6052</issn><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkUFv1DAQhSMEEqX0N9RSz6Hj2HHi3qqKlkorIaH2bE2c8dZLiLe2d6H99XgbRLlxmtHTe99YflV1yuET5xLOabux54kDtE0Njay5aEDX4k11xKWQtSr623_299WHlDYAxQr9UYXfQsbs5zUbJrTf2UOYKDE_M2R7j8NEbBUizfm53vswLc51xL3PTxfM-Xk8CPQLbWYpTLvsw5zYT58fwi6zTBjTx-qdwynRyZ95XN1ff767-lKvvt7cXl2uaiuaNtfIVeskpwFa7MgJpdquk0RScdUR6A60laoHHBwIzUfVogSnFFnecCc6cVzdLtwx4MZso_-B8ckE9OZFCHFtMGZvJzJOq0b2PQg48Lth6BVoOShLYzk2YmGdLaxtDI87Stlswi7O5flGgFatlko3xdUtLhtDSpHc36sczKEbc-jGLN2Y8uHmpRsjSrJfkqkk5jXFV_7_or8B5X6VVg</recordid><startdate>20240824</startdate><enddate>20240824</enddate><creator>Devecioğlu, Deniz O.</creator><creator>Park, Mu-In</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20240824</creationdate><title>Rotating black holes in a viable Lorentz-violating gravity: finding exact solutions without tears</title><author>Devecioğlu, Deniz O. ; Park, Mu-In</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-a165f41eb05a7ef3665774ee46167e09709c4680abf0391d65a40f66ec121f373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Black holes</topic><topic>Cosmological constant</topic><topic>Couplings</topic><topic>Elementary Particles</topic><topic>Exact solutions</topic><topic>Hadrons</topic><topic>Hamilton-Jacobi equation</topic><topic>Heavy Ions</topic><topic>Isomorphism</topic><topic>Light speed</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article – Theoretical Physics</topic><topic>Rotation</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devecioğlu, Deniz O.</creatorcontrib><creatorcontrib>Park, Mu-In</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devecioğlu, Deniz O.</au><au>Park, Mu-In</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotating black holes in a viable Lorentz-violating gravity: finding exact solutions without tears</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2024-08-24</date><risdate>2024</risdate><volume>84</volume><issue>8</issue><spage>852</spage><epage>13</epage><pages>852-13</pages><artnum>852</artnum><issn>1434-6052</issn><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>We introduce a two-step procedure for finding Kerr-type rotating black hole solutions without tears. Considering the low-energy sector of Hořava gravity as a viable Lorentz-violating gravity in four dimensions which admits a different speed of gravity, we find the exact rotating black hole solutions (with or without cosmological constant). We find that the singular region extends to r &lt; 0 region from the ring singularity at r = 0 in Boyer–Lindquist coordinates. There are two Killing horizons where g rr = 0 and the black hole thermodynamics laws are still valid. We find the rotating black hole solutions with electromagnetic charges only when we consider the noble electromagnetic couplings, in such a way that the speed of light is the same as the speed of gravity. With the noble choice of couplings, our Lorentz-violating gravity can be consistent with the recently-observed time delay of the coincident GW and GRB signals. Furthermore, in Appendices, we show that (a) the uniqueness of the invariant line element d s 2 under the foliation-preserving diffeomorphism Diff F , contrary to Lorentz-violating action, (b) the solutions are the Petrov type I with four distinct principal null vectors, and (c) the Hamilton-Jacobi equation for the geodesic particles are not separable.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-024-13209-3</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6052
ispartof The European physical journal. C, Particles and fields, 2024-08, Vol.84 (8), p.852-13, Article 852
issn 1434-6052
1434-6044
1434-6052
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f962488030ee467bb86094b6ced167da
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Astronomy
Astrophysics and Cosmology
Black holes
Cosmological constant
Couplings
Elementary Particles
Exact solutions
Hadrons
Hamilton-Jacobi equation
Heavy Ions
Isomorphism
Light speed
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article – Theoretical Physics
Rotation
String Theory
title Rotating black holes in a viable Lorentz-violating gravity: finding exact solutions without tears
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotating%20black%20holes%20in%20a%20viable%20Lorentz-violating%20gravity:%20finding%20exact%20solutions%20without%20tears&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Devecio%C4%9Flu,%20Deniz%20O.&rft.date=2024-08-24&rft.volume=84&rft.issue=8&rft.spage=852&rft.epage=13&rft.pages=852-13&rft.artnum=852&rft.issn=1434-6052&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-024-13209-3&rft_dat=%3Cproquest_doaj_%3E3096594692%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-a165f41eb05a7ef3665774ee46167e09709c4680abf0391d65a40f66ec121f373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3096594692&rft_id=info:pmid/&rfr_iscdi=true