Loading…

Quantum ultra-walks: Walks on a line with hierarchical spatial heterogeneity

We discuss the model of a one-dimensional, discrete-time walk on a line with spatial heterogeneity in the form of a variable set of ultrametric barriers. Inspired by the homogeneous quantum walk on a line, we develop a formalism by which the classical ultrametric random walk as well as the quantum w...

Full description

Saved in:
Bibliographic Details
Published in:Physical review research 2020-06, Vol.2 (2), p.023411, Article 023411
Main Author: Boettcher, Stefan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-436e2d3243c6dfd46274e06880a8f150c7afe4d7fb65379d07a2a1954c6a2e943
cites cdi_FETCH-LOGICAL-c375t-436e2d3243c6dfd46274e06880a8f150c7afe4d7fb65379d07a2a1954c6a2e943
container_end_page
container_issue 2
container_start_page 023411
container_title Physical review research
container_volume 2
creator Boettcher, Stefan
description We discuss the model of a one-dimensional, discrete-time walk on a line with spatial heterogeneity in the form of a variable set of ultrametric barriers. Inspired by the homogeneous quantum walk on a line, we develop a formalism by which the classical ultrametric random walk as well as the quantum walk can be treated in parallel by using a “coined” walk with internal degrees of freedom. For the random walk, this amounts to a second-order Markov process with a stochastic coin, better known as an (anti-)persistent walk. When this coin varies spatially in the hierarchical manner of “ultradiffusion,” it reproduces the well-known results of that model. The exact analysis employed for obtaining the walk dimension d_{w}, based on the real-space renormalization group (RG), proceeds virtually identically for the corresponding quantum walk with a unitary coin. However, while the classical walk remains robustly diffusive (d_{w}=1/2) for a wide range of barrier heights, unitarity provides for a quantum walk dimension d_{w} that varies continuously, for even the smallest amount of heterogeneity, from ballistic spreading (d_{w}=1) in the homogeneous limit to confinement (d_{w}=∞) for diverging barriers. Yet for any d_{w}
doi_str_mv 10.1103/PhysRevResearch.2.023411
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f96e0d7fe89b4d038b5ad2968988b635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f96e0d7fe89b4d038b5ad2968988b635</doaj_id><sourcerecordid>oai_doaj_org_article_f96e0d7fe89b4d038b5ad2968988b635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-436e2d3243c6dfd46274e06880a8f150c7afe4d7fb65379d07a2a1954c6a2e943</originalsourceid><addsrcrecordid>eNpdkN1Kw0AQRoMoWGrfYV8gdf-z8U6KP4WCWhQvl8lm0mxNm7K7tfTtba2IeHWGuTgfnCwjjI4Zo-L6ud3HOX7OMSIE1475mHIhGTvLBlxLkTOl5fmf-zIbxbiklHLFmDRqkM1etrBO2xXZdilAvoPuI96Q9yNIvyZAOr9GsvOpJa3HcFzxDjoSN5D8gS0mDP0C1-jT_iq7aKCLOPrhMHu7v3udPOazp4fp5HaWO1GolEuhkdeCS-F03dRS80Ii1cZQMA1T1BXQoKyLptJKFGVNC-DASiWdBo6lFMNsevLWPSztJvgVhL3twdvvRx8WFkLyrkPblBrpQYWmrGRNhakU1LzUpjSm0kIdXObkcqGPMWDz62PUHiPbf5Ett6fI4gst1XSn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum ultra-walks: Walks on a line with hierarchical spatial heterogeneity</title><source>DOAJ Directory of Open Access Journals</source><creator>Boettcher, Stefan</creator><creatorcontrib>Boettcher, Stefan</creatorcontrib><description>We discuss the model of a one-dimensional, discrete-time walk on a line with spatial heterogeneity in the form of a variable set of ultrametric barriers. Inspired by the homogeneous quantum walk on a line, we develop a formalism by which the classical ultrametric random walk as well as the quantum walk can be treated in parallel by using a “coined” walk with internal degrees of freedom. For the random walk, this amounts to a second-order Markov process with a stochastic coin, better known as an (anti-)persistent walk. When this coin varies spatially in the hierarchical manner of “ultradiffusion,” it reproduces the well-known results of that model. The exact analysis employed for obtaining the walk dimension d_{w}, based on the real-space renormalization group (RG), proceeds virtually identically for the corresponding quantum walk with a unitary coin. However, while the classical walk remains robustly diffusive (d_{w}=1/2) for a wide range of barrier heights, unitarity provides for a quantum walk dimension d_{w} that varies continuously, for even the smallest amount of heterogeneity, from ballistic spreading (d_{w}=1) in the homogeneous limit to confinement (d_{w}=∞) for diverging barriers. Yet for any d_{w}&lt;∞ the quantum ultra-walk never appears to localize.</description><identifier>ISSN: 2643-1564</identifier><identifier>EISSN: 2643-1564</identifier><identifier>DOI: 10.1103/PhysRevResearch.2.023411</identifier><language>eng</language><publisher>American Physical Society</publisher><ispartof>Physical review research, 2020-06, Vol.2 (2), p.023411, Article 023411</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-436e2d3243c6dfd46274e06880a8f150c7afe4d7fb65379d07a2a1954c6a2e943</citedby><cites>FETCH-LOGICAL-c375t-436e2d3243c6dfd46274e06880a8f150c7afe4d7fb65379d07a2a1954c6a2e943</cites><orcidid>0000-0003-1273-6771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Boettcher, Stefan</creatorcontrib><title>Quantum ultra-walks: Walks on a line with hierarchical spatial heterogeneity</title><title>Physical review research</title><description>We discuss the model of a one-dimensional, discrete-time walk on a line with spatial heterogeneity in the form of a variable set of ultrametric barriers. Inspired by the homogeneous quantum walk on a line, we develop a formalism by which the classical ultrametric random walk as well as the quantum walk can be treated in parallel by using a “coined” walk with internal degrees of freedom. For the random walk, this amounts to a second-order Markov process with a stochastic coin, better known as an (anti-)persistent walk. When this coin varies spatially in the hierarchical manner of “ultradiffusion,” it reproduces the well-known results of that model. The exact analysis employed for obtaining the walk dimension d_{w}, based on the real-space renormalization group (RG), proceeds virtually identically for the corresponding quantum walk with a unitary coin. However, while the classical walk remains robustly diffusive (d_{w}=1/2) for a wide range of barrier heights, unitarity provides for a quantum walk dimension d_{w} that varies continuously, for even the smallest amount of heterogeneity, from ballistic spreading (d_{w}=1) in the homogeneous limit to confinement (d_{w}=∞) for diverging barriers. Yet for any d_{w}&lt;∞ the quantum ultra-walk never appears to localize.</description><issn>2643-1564</issn><issn>2643-1564</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkN1Kw0AQRoMoWGrfYV8gdf-z8U6KP4WCWhQvl8lm0mxNm7K7tfTtba2IeHWGuTgfnCwjjI4Zo-L6ud3HOX7OMSIE1475mHIhGTvLBlxLkTOl5fmf-zIbxbiklHLFmDRqkM1etrBO2xXZdilAvoPuI96Q9yNIvyZAOr9GsvOpJa3HcFzxDjoSN5D8gS0mDP0C1-jT_iq7aKCLOPrhMHu7v3udPOazp4fp5HaWO1GolEuhkdeCS-F03dRS80Ii1cZQMA1T1BXQoKyLptJKFGVNC-DASiWdBo6lFMNsevLWPSztJvgVhL3twdvvRx8WFkLyrkPblBrpQYWmrGRNhakU1LzUpjSm0kIdXObkcqGPMWDz62PUHiPbf5Ett6fI4gst1XSn</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Boettcher, Stefan</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1273-6771</orcidid></search><sort><creationdate>20200630</creationdate><title>Quantum ultra-walks: Walks on a line with hierarchical spatial heterogeneity</title><author>Boettcher, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-436e2d3243c6dfd46274e06880a8f150c7afe4d7fb65379d07a2a1954c6a2e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boettcher, Stefan</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boettcher, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum ultra-walks: Walks on a line with hierarchical spatial heterogeneity</atitle><jtitle>Physical review research</jtitle><date>2020-06-30</date><risdate>2020</risdate><volume>2</volume><issue>2</issue><spage>023411</spage><pages>023411-</pages><artnum>023411</artnum><issn>2643-1564</issn><eissn>2643-1564</eissn><abstract>We discuss the model of a one-dimensional, discrete-time walk on a line with spatial heterogeneity in the form of a variable set of ultrametric barriers. Inspired by the homogeneous quantum walk on a line, we develop a formalism by which the classical ultrametric random walk as well as the quantum walk can be treated in parallel by using a “coined” walk with internal degrees of freedom. For the random walk, this amounts to a second-order Markov process with a stochastic coin, better known as an (anti-)persistent walk. When this coin varies spatially in the hierarchical manner of “ultradiffusion,” it reproduces the well-known results of that model. The exact analysis employed for obtaining the walk dimension d_{w}, based on the real-space renormalization group (RG), proceeds virtually identically for the corresponding quantum walk with a unitary coin. However, while the classical walk remains robustly diffusive (d_{w}=1/2) for a wide range of barrier heights, unitarity provides for a quantum walk dimension d_{w} that varies continuously, for even the smallest amount of heterogeneity, from ballistic spreading (d_{w}=1) in the homogeneous limit to confinement (d_{w}=∞) for diverging barriers. Yet for any d_{w}&lt;∞ the quantum ultra-walk never appears to localize.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevResearch.2.023411</doi><orcidid>https://orcid.org/0000-0003-1273-6771</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2643-1564
ispartof Physical review research, 2020-06, Vol.2 (2), p.023411, Article 023411
issn 2643-1564
2643-1564
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f96e0d7fe89b4d038b5ad2968988b635
source DOAJ Directory of Open Access Journals
title Quantum ultra-walks: Walks on a line with hierarchical spatial heterogeneity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20ultra-walks:%20Walks%20on%20a%20line%20with%20hierarchical%20spatial%20heterogeneity&rft.jtitle=Physical%20review%20research&rft.au=Boettcher,%20Stefan&rft.date=2020-06-30&rft.volume=2&rft.issue=2&rft.spage=023411&rft.pages=023411-&rft.artnum=023411&rft.issn=2643-1564&rft.eissn=2643-1564&rft_id=info:doi/10.1103/PhysRevResearch.2.023411&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_f96e0d7fe89b4d038b5ad2968988b635%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-436e2d3243c6dfd46274e06880a8f150c7afe4d7fb65379d07a2a1954c6a2e943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true