Loading…
Phase Statistics of Light/Photonic Wave Reflected from One-Dimensional Optical Disordered Media and Its Effects on Light Transport Properties
Light wave reflection intensity from optical disordered media is associated with its phase, and the phase statistics influence the reflection statistics. A detailed numerical study is reported for the statistics of the reflection coefficient |R(L)|2 and its associated phase θ for plane electromagnet...
Saved in:
Published in: | Photonics 2021-11, Vol.8 (11), p.485 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Light wave reflection intensity from optical disordered media is associated with its phase, and the phase statistics influence the reflection statistics. A detailed numerical study is reported for the statistics of the reflection coefficient |R(L)|2 and its associated phase θ for plane electromagnetic waves reflected from one dimensional Gaussian white-noise optical disordered media, ranging from weak to strong disordered regimes. The full Fokker–Planck (FP) equation for the joint probability distribution in the |R(L)|2−(θ) space is simulated numerically for varying length and disorder strength of the sample; and the statistical optical transport properties are calculated. Results show the parameter regimes of the validation of the random phase approximations (RPA) or uniform phase distribution, within the Born approximation, as well as the contribution of the phase statistics to the different reflections, averaging from nonuniform phase distribution. This constitutes a complete solution for the reflection phase statistics and its effect on light transport properties in a 1D Gaussian white-noise disordered optical potential. |
---|---|
ISSN: | 2304-6732 2304-6732 |
DOI: | 10.3390/photonics8110485 |