Loading…

Phase Statistics of Light/Photonic Wave Reflected from One-Dimensional Optical Disordered Media and Its Effects on Light Transport Properties

Light wave reflection intensity from optical disordered media is associated with its phase, and the phase statistics influence the reflection statistics. A detailed numerical study is reported for the statistics of the reflection coefficient |R(L)|2 and its associated phase θ for plane electromagnet...

Full description

Saved in:
Bibliographic Details
Published in:Photonics 2021-11, Vol.8 (11), p.485
Main Author: Pradhan, Prabhakar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c309t-453888f13b6a5da9f38ee994cd86c8934784b253e964eca70811da10b0f1af393
cites cdi_FETCH-LOGICAL-c309t-453888f13b6a5da9f38ee994cd86c8934784b253e964eca70811da10b0f1af393
container_end_page
container_issue 11
container_start_page 485
container_title Photonics
container_volume 8
creator Pradhan, Prabhakar
description Light wave reflection intensity from optical disordered media is associated with its phase, and the phase statistics influence the reflection statistics. A detailed numerical study is reported for the statistics of the reflection coefficient |R(L)|2 and its associated phase θ for plane electromagnetic waves reflected from one dimensional Gaussian white-noise optical disordered media, ranging from weak to strong disordered regimes. The full Fokker–Planck (FP) equation for the joint probability distribution in the |R(L)|2−(θ) space is simulated numerically for varying length and disorder strength of the sample; and the statistical optical transport properties are calculated. Results show the parameter regimes of the validation of the random phase approximations (RPA) or uniform phase distribution, within the Born approximation, as well as the contribution of the phase statistics to the different reflections, averaging from nonuniform phase distribution. This constitutes a complete solution for the reflection phase statistics and its effect on light transport properties in a 1D Gaussian white-noise disordered optical potential.
doi_str_mv 10.3390/photonics8110485
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f96ef9a341a74ba9ab8886b314906877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f96ef9a341a74ba9ab8886b314906877</doaj_id><sourcerecordid>2602146318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-453888f13b6a5da9f38ee994cd86c8934784b253e964eca70811da10b0f1af393</originalsourceid><addsrcrecordid>eNpdkU1rHDEMhoeSQkOae4-GniexRx6PfQz5XNiyS5vSo9HMyFkvu-OJ7QTyI_qf62RDKdVFQrx6XiFV1RfBzwAMP583IYfJD0kLwaVuP1THDXBZqw6ao3_qT9VpSltewgjQrTyufq83mIj9yJh9yoXAgmNL_7DJ5-t3KPuFz8S-k9vRkGlkLoY9W01UX_k9TcmHCXdsNZfhkq98CnGkWHTfaPTIcBrZIid27VwZL_jpgGf3Eac0h5jZOoaZYvaUPlcfHe4Snb7nk-rnzfX95V29XN0uLi-W9QDc5Fq2oLV2AnqF7YjGgSYyRg6jVoM2IDst-6YFMkrSgB0vZxlR8J47gQ4MnFSLA3cMuLVz9HuMLzagt2-NEB8sloWGHVlnFDmDIAV2skeDfbFWPQhpuNJdV1hfD6w5hscnStluw1MsN0m2UbwRUoHQRcUPqiGGlCK5v66C29cf2v9_CH8AdPSSJQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602146318</pqid></control><display><type>article</type><title>Phase Statistics of Light/Photonic Wave Reflected from One-Dimensional Optical Disordered Media and Its Effects on Light Transport Properties</title><source>EZB Electronic Journals Library</source><source>ProQuest Publicly Available Content database</source><creator>Pradhan, Prabhakar</creator><creatorcontrib>Pradhan, Prabhakar</creatorcontrib><description>Light wave reflection intensity from optical disordered media is associated with its phase, and the phase statistics influence the reflection statistics. A detailed numerical study is reported for the statistics of the reflection coefficient |R(L)|2 and its associated phase θ for plane electromagnetic waves reflected from one dimensional Gaussian white-noise optical disordered media, ranging from weak to strong disordered regimes. The full Fokker–Planck (FP) equation for the joint probability distribution in the |R(L)|2−(θ) space is simulated numerically for varying length and disorder strength of the sample; and the statistical optical transport properties are calculated. Results show the parameter regimes of the validation of the random phase approximations (RPA) or uniform phase distribution, within the Born approximation, as well as the contribution of the phase statistics to the different reflections, averaging from nonuniform phase distribution. This constitutes a complete solution for the reflection phase statistics and its effect on light transport properties in a 1D Gaussian white-noise disordered optical potential.</description><identifier>ISSN: 2304-6732</identifier><identifier>EISSN: 2304-6732</identifier><identifier>DOI: 10.3390/photonics8110485</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; backscattering ; Born approximation ; Electromagnetic radiation ; Helmholtz equations ; Light ; light localization ; Light reflection ; Localization ; Luminous intensity ; Noise ; Optical properties ; Phase distribution ; Probability distribution ; Reflectance ; reflection statistics ; Statistical analysis ; Statistics ; Transport properties ; Wave reflection</subject><ispartof>Photonics, 2021-11, Vol.8 (11), p.485</ispartof><rights>2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-453888f13b6a5da9f38ee994cd86c8934784b253e964eca70811da10b0f1af393</citedby><cites>FETCH-LOGICAL-c309t-453888f13b6a5da9f38ee994cd86c8934784b253e964eca70811da10b0f1af393</cites><orcidid>0000-0003-4363-2326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602146318/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602146318?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Pradhan, Prabhakar</creatorcontrib><title>Phase Statistics of Light/Photonic Wave Reflected from One-Dimensional Optical Disordered Media and Its Effects on Light Transport Properties</title><title>Photonics</title><description>Light wave reflection intensity from optical disordered media is associated with its phase, and the phase statistics influence the reflection statistics. A detailed numerical study is reported for the statistics of the reflection coefficient |R(L)|2 and its associated phase θ for plane electromagnetic waves reflected from one dimensional Gaussian white-noise optical disordered media, ranging from weak to strong disordered regimes. The full Fokker–Planck (FP) equation for the joint probability distribution in the |R(L)|2−(θ) space is simulated numerically for varying length and disorder strength of the sample; and the statistical optical transport properties are calculated. Results show the parameter regimes of the validation of the random phase approximations (RPA) or uniform phase distribution, within the Born approximation, as well as the contribution of the phase statistics to the different reflections, averaging from nonuniform phase distribution. This constitutes a complete solution for the reflection phase statistics and its effect on light transport properties in a 1D Gaussian white-noise disordered optical potential.</description><subject>Approximation</subject><subject>backscattering</subject><subject>Born approximation</subject><subject>Electromagnetic radiation</subject><subject>Helmholtz equations</subject><subject>Light</subject><subject>light localization</subject><subject>Light reflection</subject><subject>Localization</subject><subject>Luminous intensity</subject><subject>Noise</subject><subject>Optical properties</subject><subject>Phase distribution</subject><subject>Probability distribution</subject><subject>Reflectance</subject><subject>reflection statistics</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Transport properties</subject><subject>Wave reflection</subject><issn>2304-6732</issn><issn>2304-6732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1rHDEMhoeSQkOae4-GniexRx6PfQz5XNiyS5vSo9HMyFkvu-OJ7QTyI_qf62RDKdVFQrx6XiFV1RfBzwAMP583IYfJD0kLwaVuP1THDXBZqw6ao3_qT9VpSltewgjQrTyufq83mIj9yJh9yoXAgmNL_7DJ5-t3KPuFz8S-k9vRkGlkLoY9W01UX_k9TcmHCXdsNZfhkq98CnGkWHTfaPTIcBrZIid27VwZL_jpgGf3Eac0h5jZOoaZYvaUPlcfHe4Snb7nk-rnzfX95V29XN0uLi-W9QDc5Fq2oLV2AnqF7YjGgSYyRg6jVoM2IDst-6YFMkrSgB0vZxlR8J47gQ4MnFSLA3cMuLVz9HuMLzagt2-NEB8sloWGHVlnFDmDIAV2skeDfbFWPQhpuNJdV1hfD6w5hscnStluw1MsN0m2UbwRUoHQRcUPqiGGlCK5v66C29cf2v9_CH8AdPSSJQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Pradhan, Prabhakar</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4363-2326</orcidid></search><sort><creationdate>20211101</creationdate><title>Phase Statistics of Light/Photonic Wave Reflected from One-Dimensional Optical Disordered Media and Its Effects on Light Transport Properties</title><author>Pradhan, Prabhakar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-453888f13b6a5da9f38ee994cd86c8934784b253e964eca70811da10b0f1af393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>backscattering</topic><topic>Born approximation</topic><topic>Electromagnetic radiation</topic><topic>Helmholtz equations</topic><topic>Light</topic><topic>light localization</topic><topic>Light reflection</topic><topic>Localization</topic><topic>Luminous intensity</topic><topic>Noise</topic><topic>Optical properties</topic><topic>Phase distribution</topic><topic>Probability distribution</topic><topic>Reflectance</topic><topic>reflection statistics</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Transport properties</topic><topic>Wave reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradhan, Prabhakar</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradhan, Prabhakar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Statistics of Light/Photonic Wave Reflected from One-Dimensional Optical Disordered Media and Its Effects on Light Transport Properties</atitle><jtitle>Photonics</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>8</volume><issue>11</issue><spage>485</spage><pages>485-</pages><issn>2304-6732</issn><eissn>2304-6732</eissn><abstract>Light wave reflection intensity from optical disordered media is associated with its phase, and the phase statistics influence the reflection statistics. A detailed numerical study is reported for the statistics of the reflection coefficient |R(L)|2 and its associated phase θ for plane electromagnetic waves reflected from one dimensional Gaussian white-noise optical disordered media, ranging from weak to strong disordered regimes. The full Fokker–Planck (FP) equation for the joint probability distribution in the |R(L)|2−(θ) space is simulated numerically for varying length and disorder strength of the sample; and the statistical optical transport properties are calculated. Results show the parameter regimes of the validation of the random phase approximations (RPA) or uniform phase distribution, within the Born approximation, as well as the contribution of the phase statistics to the different reflections, averaging from nonuniform phase distribution. This constitutes a complete solution for the reflection phase statistics and its effect on light transport properties in a 1D Gaussian white-noise disordered optical potential.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/photonics8110485</doi><orcidid>https://orcid.org/0000-0003-4363-2326</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2304-6732
ispartof Photonics, 2021-11, Vol.8 (11), p.485
issn 2304-6732
2304-6732
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f96ef9a341a74ba9ab8886b314906877
source EZB Electronic Journals Library; ProQuest Publicly Available Content database
subjects Approximation
backscattering
Born approximation
Electromagnetic radiation
Helmholtz equations
Light
light localization
Light reflection
Localization
Luminous intensity
Noise
Optical properties
Phase distribution
Probability distribution
Reflectance
reflection statistics
Statistical analysis
Statistics
Transport properties
Wave reflection
title Phase Statistics of Light/Photonic Wave Reflected from One-Dimensional Optical Disordered Media and Its Effects on Light Transport Properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Statistics%20of%20Light/Photonic%20Wave%20Reflected%20from%20One-Dimensional%20Optical%20Disordered%20Media%20and%20Its%20Effects%20on%20Light%20Transport%20Properties&rft.jtitle=Photonics&rft.au=Pradhan,%20Prabhakar&rft.date=2021-11-01&rft.volume=8&rft.issue=11&rft.spage=485&rft.pages=485-&rft.issn=2304-6732&rft.eissn=2304-6732&rft_id=info:doi/10.3390/photonics8110485&rft_dat=%3Cproquest_doaj_%3E2602146318%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-453888f13b6a5da9f38ee994cd86c8934784b253e964eca70811da10b0f1af393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602146318&rft_id=info:pmid/&rfr_iscdi=true