Loading…
An Architecture and Management Platform for Blockchain-Based Personal Health Record Exchange: Development and Usability Study
Personal health record (PHR) security, correctness, and protection are essential for health and medical services. Blockchain architecture can provide efficient data retrieval and security requirements. Exchangeable PHRs and the self-management of patient health can offer many benefits to traditional...
Saved in:
Published in: | Journal of medical Internet research 2020-06, Vol.22 (6), p.e16748-e16748 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Personal health record (PHR) security, correctness, and protection are essential for health and medical services. Blockchain architecture can provide efficient data retrieval and security requirements. Exchangeable PHRs and the self-management of patient health can offer many benefits to traditional medical services by allowing people to manage their own health records for disease prevention, prediction, and control while reducing resource burdens on the health care infrastructure and improving population health and quality of life.
This study aimed to build a blockchain-based architecture for an international health record exchange platform to ensure health record confidentiality, integrity, and availability for health management and used Health Level 7 Fast Healthcare Interoperability Resource international standards as the data format that could allow international, cross-institutional, and patient/doctor exchanges of PHRs.
The PHR architecture in this study comprised 2 main components. The first component was the PHR management platform, on which users could upload PHRs, view their record content, authorize PHR exchanges with doctors or other medical health care providers, and check their block information. When a PHR was uploaded, the hash value of the PHR would be calculated by the SHA-256 algorithm and the PHR would be encrypted by the Rivest-Shamir-Adleman encryption mechanism before being transferred to a secure database. The second component was the blockchain exchange architecture, which was based on Ethereum to create a private chain. Proof of authority, which delivers transactions through a consensus mechanism based on identity, was used for consensus. The hash value was calculated based on the previous hash value, block content, and timestamp by a hash function.
The PHR blockchain architecture constructed in this study is an effective method for the management and utilization of PHRs. The platform has been deployed in Southeast Asian countries via the Asia eHealth Information Network (AeHIN) and has become the first PHR management platform for cross-region medical data exchange.
Some systems have shown that blockchain technology has great potential for electronic health record applications. This study combined different types of data storage modes to effectively solve the problems of PHR data security, storage, and transmission and proposed a hybrid blockchain and data security approach to enable effective international PHR exchange. By partn |
---|---|
ISSN: | 1438-8871 1439-4456 1438-8871 |
DOI: | 10.2196/16748 |