Loading…

Carrier recombination suppression and transport enhancement enable high‐performance self‐powered broadband Sb2Se3 photodetectors

Antimony selenide (Sb2Se3) is a promising candidate for photodetector applications boasting unique material benefits and remarkable optoelectronic properties. Achieving high‐performance self‐powered Sb2Se3 photodetector through a synergistic regulation of absorber layer and heterojunction interface...

Full description

Saved in:
Bibliographic Details
Published in:InfoMat 2023-04, Vol.5 (4), p.n/a
Main Authors: Chen, Shuo, Fu, Yi, Ishaq, Muhammad, Li, Chuanhao, Ren, Donglou, Su, Zhenghua, Qiao, Xvsheng, Fan, Ping, Liang, Guangxing, Tang, Jiang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 4
container_start_page
container_title InfoMat
container_volume 5
creator Chen, Shuo
Fu, Yi
Ishaq, Muhammad
Li, Chuanhao
Ren, Donglou
Su, Zhenghua
Qiao, Xvsheng
Fan, Ping
Liang, Guangxing
Tang, Jiang
description Antimony selenide (Sb2Se3) is a promising candidate for photodetector applications boasting unique material benefits and remarkable optoelectronic properties. Achieving high‐performance self‐powered Sb2Se3 photodetector through a synergistic regulation of absorber layer and heterojunction interface demonstrates great potential and needs essential investigation. In this study, an effective two‐step thermodynamic/kinetic deposition technique containing sputtered and selenized Sb precursor is implemented to induce self‐assembled growth of Sb2Se3 light absorbing thin film with large crystal grains and desirable [hk1] orientation, presenting considerable thin‐film photodetector performance. Furthermore, aluminum (Al3+) cation dopant is introduced to modify the optoelectronic properties of CdS buffer layer, and further optimize the Sb2Se3/CdS (Al) heterojunction interface quality. Thanks to the suppressed carrier recombination and enhanced carrier transport kinetics, the champion Mo/Sb2Se3/CdS (Al)/ITO/Ag photodetector exhibits self‐powered and broadband characteristics, accompanied by simultaneously high responsivity of 0.9 A W−1 (at 11 nW cm−2), linear dynamic range of 120 dB, impressive ON/OFF switching ratio over 106 and signal‐to‐noise ratio of 109, record total noise determined realistic detectivity of 4.78 × 1012 Jones, and ultra‐fast response speed with rise/decay time of 24/75 ns, representing the top level for Sb2Se3‐based photodetectors. This intriguing work opens up an avenue for its self‐powered broadband photodetector applications. The thermodynamic/kinetic controlled self‐assembled growth of high‐quality Sb2Se3, accompanied with Al3+ cation doping in CdS induced heterojunction interface optimization can remarkably suppress carrier recombination and enhance carrier transport. Consequently, the champion Sb2Se3/CdS (Al) photodetector exhibits self‐powered broadband characteristics, accompanied by simultaneously high responsivity (0.9 A W−1), record detectivity (4.78 × 1012 Jones), and ultra‐fast response speed (rise/decay time of 24/75 ns).
doi_str_mv 10.1002/inf2.12400
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f9ab2b995b35419abe0bdb4e33f520fa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f9ab2b995b35419abe0bdb4e33f520fa</doaj_id><sourcerecordid>2822697030</sourcerecordid><originalsourceid>FETCH-LOGICAL-d2910-5319c10e092996259622658255f174c11c3daafbe0afa19ecd08ca51f97e08083</originalsourceid><addsrcrecordid>eNpNUcFqGzEQXUILCUku-YKFnJ2OpJW9OhbTtIbQHtKexWg1imXW0na0JuTWQz8g35gv6a5dSg_DvJl5vHnwqupGwJ0AkB9iCvJOyAbgrLqQerlaKLHU7_7D59V1KTuYyBoaqcVF9XuNzJG4Zury3sWEY8ypLodhYCplxph8PTKmMmQea0pbTB3tKc0YXU_1Nj5t3369DsQh836-1oX6MK_yMzH52nFG72ahRycfSdXDNo_Z00jdmLlcVe8D9oWu__bL6sf9p-_rL4uHb583648PCy-NgIVWwnQCCIw0Zin1VHKpW6l1EKumE6JTHjE4AgwoDHUe2g61CGZF0EKrLqvNSddn3NmB4x75xWaM9rjI_GSRx9j1ZINBJ50x2indiGkgcN41pFTQEgJOWrcnrYHzzwOV0e7ygdNk38p28mVWoGBiiRPrOfb08u-lADsnZufE7DExu_l6L49I_QFl9Y8W</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822697030</pqid></control><display><type>article</type><title>Carrier recombination suppression and transport enhancement enable high‐performance self‐powered broadband Sb2Se3 photodetectors</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Chen, Shuo ; Fu, Yi ; Ishaq, Muhammad ; Li, Chuanhao ; Ren, Donglou ; Su, Zhenghua ; Qiao, Xvsheng ; Fan, Ping ; Liang, Guangxing ; Tang, Jiang</creator><creatorcontrib>Chen, Shuo ; Fu, Yi ; Ishaq, Muhammad ; Li, Chuanhao ; Ren, Donglou ; Su, Zhenghua ; Qiao, Xvsheng ; Fan, Ping ; Liang, Guangxing ; Tang, Jiang</creatorcontrib><description>Antimony selenide (Sb2Se3) is a promising candidate for photodetector applications boasting unique material benefits and remarkable optoelectronic properties. Achieving high‐performance self‐powered Sb2Se3 photodetector through a synergistic regulation of absorber layer and heterojunction interface demonstrates great potential and needs essential investigation. In this study, an effective two‐step thermodynamic/kinetic deposition technique containing sputtered and selenized Sb precursor is implemented to induce self‐assembled growth of Sb2Se3 light absorbing thin film with large crystal grains and desirable [hk1] orientation, presenting considerable thin‐film photodetector performance. Furthermore, aluminum (Al3+) cation dopant is introduced to modify the optoelectronic properties of CdS buffer layer, and further optimize the Sb2Se3/CdS (Al) heterojunction interface quality. Thanks to the suppressed carrier recombination and enhanced carrier transport kinetics, the champion Mo/Sb2Se3/CdS (Al)/ITO/Ag photodetector exhibits self‐powered and broadband characteristics, accompanied by simultaneously high responsivity of 0.9 A W−1 (at 11 nW cm−2), linear dynamic range of 120 dB, impressive ON/OFF switching ratio over 106 and signal‐to‐noise ratio of 109, record total noise determined realistic detectivity of 4.78 × 1012 Jones, and ultra‐fast response speed with rise/decay time of 24/75 ns, representing the top level for Sb2Se3‐based photodetectors. This intriguing work opens up an avenue for its self‐powered broadband photodetector applications. The thermodynamic/kinetic controlled self‐assembled growth of high‐quality Sb2Se3, accompanied with Al3+ cation doping in CdS induced heterojunction interface optimization can remarkably suppress carrier recombination and enhance carrier transport. Consequently, the champion Sb2Se3/CdS (Al) photodetector exhibits self‐powered broadband characteristics, accompanied by simultaneously high responsivity (0.9 A W−1), record detectivity (4.78 × 1012 Jones), and ultra‐fast response speed (rise/decay time of 24/75 ns).</description><identifier>ISSN: 2567-3165</identifier><identifier>EISSN: 2567-3165</identifier><identifier>DOI: 10.1002/inf2.12400</identifier><language>eng</language><publisher>Melbourne: John Wiley &amp; Sons, Inc</publisher><subject>Aluminum ; Antimony compounds ; Broadband ; Buffer layers ; Carrier recombination ; Carrier transport ; Electromagnetic absorption ; Graphene ; Heterojunctions ; Lasers ; Light ; Nanowires ; Optoelectronics ; Photometers ; photoresponse ; Photovoltaic cells ; recombination suppression ; Sb2Se3 ; Selenides ; Self-assembly ; self‐powered photodetector ; Signal to noise ratio ; Thin films ; transport enhancement</subject><ispartof>InfoMat, 2023-04, Vol.5 (4), p.n/a</ispartof><rights>2023 The Authors. published by UESTC and John Wiley &amp; Sons Australia, Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2574-2943 ; 0000-0002-9033-4885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2822697030/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2822697030?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11541,25731,27901,27902,36989,44566,46027,46451,74869</link.rule.ids></links><search><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Fu, Yi</creatorcontrib><creatorcontrib>Ishaq, Muhammad</creatorcontrib><creatorcontrib>Li, Chuanhao</creatorcontrib><creatorcontrib>Ren, Donglou</creatorcontrib><creatorcontrib>Su, Zhenghua</creatorcontrib><creatorcontrib>Qiao, Xvsheng</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Liang, Guangxing</creatorcontrib><creatorcontrib>Tang, Jiang</creatorcontrib><title>Carrier recombination suppression and transport enhancement enable high‐performance self‐powered broadband Sb2Se3 photodetectors</title><title>InfoMat</title><description>Antimony selenide (Sb2Se3) is a promising candidate for photodetector applications boasting unique material benefits and remarkable optoelectronic properties. Achieving high‐performance self‐powered Sb2Se3 photodetector through a synergistic regulation of absorber layer and heterojunction interface demonstrates great potential and needs essential investigation. In this study, an effective two‐step thermodynamic/kinetic deposition technique containing sputtered and selenized Sb precursor is implemented to induce self‐assembled growth of Sb2Se3 light absorbing thin film with large crystal grains and desirable [hk1] orientation, presenting considerable thin‐film photodetector performance. Furthermore, aluminum (Al3+) cation dopant is introduced to modify the optoelectronic properties of CdS buffer layer, and further optimize the Sb2Se3/CdS (Al) heterojunction interface quality. Thanks to the suppressed carrier recombination and enhanced carrier transport kinetics, the champion Mo/Sb2Se3/CdS (Al)/ITO/Ag photodetector exhibits self‐powered and broadband characteristics, accompanied by simultaneously high responsivity of 0.9 A W−1 (at 11 nW cm−2), linear dynamic range of 120 dB, impressive ON/OFF switching ratio over 106 and signal‐to‐noise ratio of 109, record total noise determined realistic detectivity of 4.78 × 1012 Jones, and ultra‐fast response speed with rise/decay time of 24/75 ns, representing the top level for Sb2Se3‐based photodetectors. This intriguing work opens up an avenue for its self‐powered broadband photodetector applications. The thermodynamic/kinetic controlled self‐assembled growth of high‐quality Sb2Se3, accompanied with Al3+ cation doping in CdS induced heterojunction interface optimization can remarkably suppress carrier recombination and enhance carrier transport. Consequently, the champion Sb2Se3/CdS (Al) photodetector exhibits self‐powered broadband characteristics, accompanied by simultaneously high responsivity (0.9 A W−1), record detectivity (4.78 × 1012 Jones), and ultra‐fast response speed (rise/decay time of 24/75 ns).</description><subject>Aluminum</subject><subject>Antimony compounds</subject><subject>Broadband</subject><subject>Buffer layers</subject><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>Electromagnetic absorption</subject><subject>Graphene</subject><subject>Heterojunctions</subject><subject>Lasers</subject><subject>Light</subject><subject>Nanowires</subject><subject>Optoelectronics</subject><subject>Photometers</subject><subject>photoresponse</subject><subject>Photovoltaic cells</subject><subject>recombination suppression</subject><subject>Sb2Se3</subject><subject>Selenides</subject><subject>Self-assembly</subject><subject>self‐powered photodetector</subject><subject>Signal to noise ratio</subject><subject>Thin films</subject><subject>transport enhancement</subject><issn>2567-3165</issn><issn>2567-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFqGzEQXUILCUku-YKFnJ2OpJW9OhbTtIbQHtKexWg1imXW0na0JuTWQz8g35gv6a5dSg_DvJl5vHnwqupGwJ0AkB9iCvJOyAbgrLqQerlaKLHU7_7D59V1KTuYyBoaqcVF9XuNzJG4Zury3sWEY8ypLodhYCplxph8PTKmMmQea0pbTB3tKc0YXU_1Nj5t3369DsQh836-1oX6MK_yMzH52nFG72ahRycfSdXDNo_Z00jdmLlcVe8D9oWu__bL6sf9p-_rL4uHb583648PCy-NgIVWwnQCCIw0Zin1VHKpW6l1EKumE6JTHjE4AgwoDHUe2g61CGZF0EKrLqvNSddn3NmB4x75xWaM9rjI_GSRx9j1ZINBJ50x2indiGkgcN41pFTQEgJOWrcnrYHzzwOV0e7ygdNk38p28mVWoGBiiRPrOfb08u-lADsnZufE7DExu_l6L49I_QFl9Y8W</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Chen, Shuo</creator><creator>Fu, Yi</creator><creator>Ishaq, Muhammad</creator><creator>Li, Chuanhao</creator><creator>Ren, Donglou</creator><creator>Su, Zhenghua</creator><creator>Qiao, Xvsheng</creator><creator>Fan, Ping</creator><creator>Liang, Guangxing</creator><creator>Tang, Jiang</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2574-2943</orcidid><orcidid>https://orcid.org/0000-0002-9033-4885</orcidid></search><sort><creationdate>202304</creationdate><title>Carrier recombination suppression and transport enhancement enable high‐performance self‐powered broadband Sb2Se3 photodetectors</title><author>Chen, Shuo ; Fu, Yi ; Ishaq, Muhammad ; Li, Chuanhao ; Ren, Donglou ; Su, Zhenghua ; Qiao, Xvsheng ; Fan, Ping ; Liang, Guangxing ; Tang, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d2910-5319c10e092996259622658255f174c11c3daafbe0afa19ecd08ca51f97e08083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Antimony compounds</topic><topic>Broadband</topic><topic>Buffer layers</topic><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>Electromagnetic absorption</topic><topic>Graphene</topic><topic>Heterojunctions</topic><topic>Lasers</topic><topic>Light</topic><topic>Nanowires</topic><topic>Optoelectronics</topic><topic>Photometers</topic><topic>photoresponse</topic><topic>Photovoltaic cells</topic><topic>recombination suppression</topic><topic>Sb2Se3</topic><topic>Selenides</topic><topic>Self-assembly</topic><topic>self‐powered photodetector</topic><topic>Signal to noise ratio</topic><topic>Thin films</topic><topic>transport enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Fu, Yi</creatorcontrib><creatorcontrib>Ishaq, Muhammad</creatorcontrib><creatorcontrib>Li, Chuanhao</creatorcontrib><creatorcontrib>Ren, Donglou</creatorcontrib><creatorcontrib>Su, Zhenghua</creatorcontrib><creatorcontrib>Qiao, Xvsheng</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Liang, Guangxing</creatorcontrib><creatorcontrib>Tang, Jiang</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>InfoMat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shuo</au><au>Fu, Yi</au><au>Ishaq, Muhammad</au><au>Li, Chuanhao</au><au>Ren, Donglou</au><au>Su, Zhenghua</au><au>Qiao, Xvsheng</au><au>Fan, Ping</au><au>Liang, Guangxing</au><au>Tang, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carrier recombination suppression and transport enhancement enable high‐performance self‐powered broadband Sb2Se3 photodetectors</atitle><jtitle>InfoMat</jtitle><date>2023-04</date><risdate>2023</risdate><volume>5</volume><issue>4</issue><epage>n/a</epage><issn>2567-3165</issn><eissn>2567-3165</eissn><abstract>Antimony selenide (Sb2Se3) is a promising candidate for photodetector applications boasting unique material benefits and remarkable optoelectronic properties. Achieving high‐performance self‐powered Sb2Se3 photodetector through a synergistic regulation of absorber layer and heterojunction interface demonstrates great potential and needs essential investigation. In this study, an effective two‐step thermodynamic/kinetic deposition technique containing sputtered and selenized Sb precursor is implemented to induce self‐assembled growth of Sb2Se3 light absorbing thin film with large crystal grains and desirable [hk1] orientation, presenting considerable thin‐film photodetector performance. Furthermore, aluminum (Al3+) cation dopant is introduced to modify the optoelectronic properties of CdS buffer layer, and further optimize the Sb2Se3/CdS (Al) heterojunction interface quality. Thanks to the suppressed carrier recombination and enhanced carrier transport kinetics, the champion Mo/Sb2Se3/CdS (Al)/ITO/Ag photodetector exhibits self‐powered and broadband characteristics, accompanied by simultaneously high responsivity of 0.9 A W−1 (at 11 nW cm−2), linear dynamic range of 120 dB, impressive ON/OFF switching ratio over 106 and signal‐to‐noise ratio of 109, record total noise determined realistic detectivity of 4.78 × 1012 Jones, and ultra‐fast response speed with rise/decay time of 24/75 ns, representing the top level for Sb2Se3‐based photodetectors. This intriguing work opens up an avenue for its self‐powered broadband photodetector applications. The thermodynamic/kinetic controlled self‐assembled growth of high‐quality Sb2Se3, accompanied with Al3+ cation doping in CdS induced heterojunction interface optimization can remarkably suppress carrier recombination and enhance carrier transport. Consequently, the champion Sb2Se3/CdS (Al) photodetector exhibits self‐powered broadband characteristics, accompanied by simultaneously high responsivity (0.9 A W−1), record detectivity (4.78 × 1012 Jones), and ultra‐fast response speed (rise/decay time of 24/75 ns).</abstract><cop>Melbourne</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/inf2.12400</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2574-2943</orcidid><orcidid>https://orcid.org/0000-0002-9033-4885</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2567-3165
ispartof InfoMat, 2023-04, Vol.5 (4), p.n/a
issn 2567-3165
2567-3165
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f9ab2b995b35419abe0bdb4e33f520fa
source Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects Aluminum
Antimony compounds
Broadband
Buffer layers
Carrier recombination
Carrier transport
Electromagnetic absorption
Graphene
Heterojunctions
Lasers
Light
Nanowires
Optoelectronics
Photometers
photoresponse
Photovoltaic cells
recombination suppression
Sb2Se3
Selenides
Self-assembly
self‐powered photodetector
Signal to noise ratio
Thin films
transport enhancement
title Carrier recombination suppression and transport enhancement enable high‐performance self‐powered broadband Sb2Se3 photodetectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carrier%20recombination%20suppression%20and%20transport%20enhancement%20enable%20high%E2%80%90performance%20self%E2%80%90powered%20broadband%20Sb2Se3%20photodetectors&rft.jtitle=InfoMat&rft.au=Chen,%20Shuo&rft.date=2023-04&rft.volume=5&rft.issue=4&rft.epage=n/a&rft.issn=2567-3165&rft.eissn=2567-3165&rft_id=info:doi/10.1002/inf2.12400&rft_dat=%3Cproquest_doaj_%3E2822697030%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d2910-5319c10e092996259622658255f174c11c3daafbe0afa19ecd08ca51f97e08083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2822697030&rft_id=info:pmid/&rfr_iscdi=true