Loading…

The ab initio study of unconventional superconductivity in CeCoIn5 and FeSe

The electronic structure and shape of the Fermi surface are known to be of fundamental importance for the superconducting instability in real materials. We demonstrate that such an instability may be explored by static Cooper pair susceptibility renormalized by pairing interaction and present an eff...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2017-06, Vol.19 (6), p.063039
Main Authors: Ptok, Andrzej, Kapcia, Konrad J, Piekarz, Przemys aw, Ole, Andrzej M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electronic structure and shape of the Fermi surface are known to be of fundamental importance for the superconducting instability in real materials. We demonstrate that such an instability may be explored by static Cooper pair susceptibility renormalized by pairing interaction and present an efficient method of its evaluation using Wannier orbitals derived from ab initio calculation. As an example, this approach is used to search for an unconventional superconducting phase of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type in a heavy-fermion compound CeCoIn5 and an iron-based superconductor FeSe. The results suggest that the FFLO superconducting phase occurs at finite magnetic field in both materials.
ISSN:1367-2630
DOI:10.1088/1367-2630/aa6d9d