Loading…

Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa , its structure, gene expression and RNA editing

Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ (San Francisco, CA) CA), 2020-06, Vol.8, p.e9309-e9309, Article e9309
Main Authors: Shtratnikova, Viktoria Yu, Schelkunov, Mikhail I., Penin, Aleksey A., Logacheva, Maria D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3
cites cdi_FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3
container_end_page e9309
container_issue
container_start_page e9309
container_title PeerJ (San Francisco, CA)
container_volume 8
creator Shtratnikova, Viktoria Yu
Schelkunov, Mikhail I.
Penin, Aleksey A.
Logacheva, Maria D.
description Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of Hypopitys monotropa , a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of H. monotropa is larger than that of its photosynthetic relative Vaccinium macrocarpon , and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the H. monotropa mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.
doi_str_mv 10.7717/peerj.9309
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f9e0b83a35464b58b2e7ccb5b713ad06</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f9e0b83a35464b58b2e7ccb5b713ad06</doaj_id><sourcerecordid>2414908589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3</originalsourceid><addsrcrecordid>eNpdkt9qFDEUxgdRbKm98QkC3oh0azKZzCQ3QinWFqqC6HVIMmd2s8zkjElG3FfwqZvdLWLNTc6fjx_nHL6qes3oZdex7v0MELeXilP1rDqtWdutJBfq-T_xSXWe0paWJ-uWSv6yOuElYELQ0-rPZ5_RbTD00ZuRrCHgBAQHkjdAAoZ5gxnTLpQ0e0emncMSQcQccd6UyjyakMntbsbZ510iE4ZDz5AL4nMiKcfF5SXCxR4OBH7PEVLyGIgJPfn25YpA77MP61fVi8GMCc4f_7Pqx83H79e3q_uvn-6ur-5XrmlUXgHjHeO2boSiAG1ZhDWmrYUFJms7SCVkO1hZxIwKK8FJy3hD2x5aaRvr-Fl1d-T2aLZ6jn4ycafReH0oYFxrE8uyI-hBAbWSGy6atrFC2ho656ywZQLT07awPhxZ82In6B2EHM34BPq0E_xGr_GX7jjtREcL4O0jIOLPBVLWk08OxnJVwCXpumGKKinrukjf_Cfd4hJDOdVe1SgqhVRF9e6ochFTijD8HYZRvXeMPjhG7x3DHwC9KLYO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414908589</pqid></control><display><type>article</type><title>Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa , its structure, gene expression and RNA editing</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Shtratnikova, Viktoria Yu ; Schelkunov, Mikhail I. ; Penin, Aleksey A. ; Logacheva, Maria D.</creator><creatorcontrib>Shtratnikova, Viktoria Yu ; Schelkunov, Mikhail I. ; Penin, Aleksey A. ; Logacheva, Maria D.</creatorcontrib><description>Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of Hypopitys monotropa , a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of H. monotropa is larger than that of its photosynthetic relative Vaccinium macrocarpon , and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the H. monotropa mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.</description><identifier>ISSN: 2167-8359</identifier><identifier>EISSN: 2167-8359</identifier><identifier>DOI: 10.7717/peerj.9309</identifier><identifier>PMID: 32601550</identifier><language>eng</language><publisher>San Diego: PeerJ, Inc</publisher><subject>Chromosomes ; Deoxyribonucleic acid ; DNA ; Flowering ; Fungi ; Gene expression ; Gene transfer ; Genomes ; Genomics ; Horizontal transfer ; Hypopitys ; Hypopitys monotropa ; Library collections ; Mitochondria ; Mitochondrial genome ; Mycoheterotrophic plants ; Non-photosynthetic plants ; Plant Science ; Proteins ; RNA editing ; Splicing</subject><ispartof>PeerJ (San Francisco, CA), 2020-06, Vol.8, p.e9309-e9309, Article e9309</ispartof><rights>2020 Shtratnikova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Shtratnikova et al. 2020 Shtratnikova et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3</citedby><cites>FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3</cites><orcidid>0000-0001-8804-7281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414908589/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414908589?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Shtratnikova, Viktoria Yu</creatorcontrib><creatorcontrib>Schelkunov, Mikhail I.</creatorcontrib><creatorcontrib>Penin, Aleksey A.</creatorcontrib><creatorcontrib>Logacheva, Maria D.</creatorcontrib><title>Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa , its structure, gene expression and RNA editing</title><title>PeerJ (San Francisco, CA)</title><description>Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of Hypopitys monotropa , a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of H. monotropa is larger than that of its photosynthetic relative Vaccinium macrocarpon , and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the H. monotropa mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.</description><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Flowering</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Gene transfer</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Horizontal transfer</subject><subject>Hypopitys</subject><subject>Hypopitys monotropa</subject><subject>Library collections</subject><subject>Mitochondria</subject><subject>Mitochondrial genome</subject><subject>Mycoheterotrophic plants</subject><subject>Non-photosynthetic plants</subject><subject>Plant Science</subject><subject>Proteins</subject><subject>RNA editing</subject><subject>Splicing</subject><issn>2167-8359</issn><issn>2167-8359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9qFDEUxgdRbKm98QkC3oh0azKZzCQ3QinWFqqC6HVIMmd2s8zkjElG3FfwqZvdLWLNTc6fjx_nHL6qes3oZdex7v0MELeXilP1rDqtWdutJBfq-T_xSXWe0paWJ-uWSv6yOuElYELQ0-rPZ5_RbTD00ZuRrCHgBAQHkjdAAoZ5gxnTLpQ0e0emncMSQcQccd6UyjyakMntbsbZ510iE4ZDz5AL4nMiKcfF5SXCxR4OBH7PEVLyGIgJPfn25YpA77MP61fVi8GMCc4f_7Pqx83H79e3q_uvn-6ur-5XrmlUXgHjHeO2boSiAG1ZhDWmrYUFJms7SCVkO1hZxIwKK8FJy3hD2x5aaRvr-Fl1d-T2aLZ6jn4ycafReH0oYFxrE8uyI-hBAbWSGy6atrFC2ho656ywZQLT07awPhxZ82In6B2EHM34BPq0E_xGr_GX7jjtREcL4O0jIOLPBVLWk08OxnJVwCXpumGKKinrukjf_Cfd4hJDOdVe1SgqhVRF9e6ochFTijD8HYZRvXeMPjhG7x3DHwC9KLYO</recordid><startdate>20200619</startdate><enddate>20200619</enddate><creator>Shtratnikova, Viktoria Yu</creator><creator>Schelkunov, Mikhail I.</creator><creator>Penin, Aleksey A.</creator><creator>Logacheva, Maria D.</creator><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8804-7281</orcidid></search><sort><creationdate>20200619</creationdate><title>Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa , its structure, gene expression and RNA editing</title><author>Shtratnikova, Viktoria Yu ; Schelkunov, Mikhail I. ; Penin, Aleksey A. ; Logacheva, Maria D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Flowering</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Gene transfer</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Horizontal transfer</topic><topic>Hypopitys</topic><topic>Hypopitys monotropa</topic><topic>Library collections</topic><topic>Mitochondria</topic><topic>Mitochondrial genome</topic><topic>Mycoheterotrophic plants</topic><topic>Non-photosynthetic plants</topic><topic>Plant Science</topic><topic>Proteins</topic><topic>RNA editing</topic><topic>Splicing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shtratnikova, Viktoria Yu</creatorcontrib><creatorcontrib>Schelkunov, Mikhail I.</creatorcontrib><creatorcontrib>Penin, Aleksey A.</creatorcontrib><creatorcontrib>Logacheva, Maria D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ (San Francisco, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shtratnikova, Viktoria Yu</au><au>Schelkunov, Mikhail I.</au><au>Penin, Aleksey A.</au><au>Logacheva, Maria D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa , its structure, gene expression and RNA editing</atitle><jtitle>PeerJ (San Francisco, CA)</jtitle><date>2020-06-19</date><risdate>2020</risdate><volume>8</volume><spage>e9309</spage><epage>e9309</epage><pages>e9309-e9309</pages><artnum>e9309</artnum><issn>2167-8359</issn><eissn>2167-8359</eissn><abstract>Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of Hypopitys monotropa , a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of H. monotropa is larger than that of its photosynthetic relative Vaccinium macrocarpon , and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the H. monotropa mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.</abstract><cop>San Diego</cop><pub>PeerJ, Inc</pub><pmid>32601550</pmid><doi>10.7717/peerj.9309</doi><orcidid>https://orcid.org/0000-0001-8804-7281</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2167-8359
ispartof PeerJ (San Francisco, CA), 2020-06, Vol.8, p.e9309-e9309, Article e9309
issn 2167-8359
2167-8359
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f9e0b83a35464b58b2e7ccb5b713ad06
source Open Access: PubMed Central; Publicly Available Content Database
subjects Chromosomes
Deoxyribonucleic acid
DNA
Flowering
Fungi
Gene expression
Gene transfer
Genomes
Genomics
Horizontal transfer
Hypopitys
Hypopitys monotropa
Library collections
Mitochondria
Mitochondrial genome
Mycoheterotrophic plants
Non-photosynthetic plants
Plant Science
Proteins
RNA editing
Splicing
title Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa , its structure, gene expression and RNA editing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20genome%20of%20the%20nonphotosynthetic%20mycoheterotrophic%20plant%20Hypopitys%20monotropa%20,%20its%20structure,%20gene%20expression%20and%20RNA%20editing&rft.jtitle=PeerJ%20(San%20Francisco,%20CA)&rft.au=Shtratnikova,%20Viktoria%20Yu&rft.date=2020-06-19&rft.volume=8&rft.spage=e9309&rft.epage=e9309&rft.pages=e9309-e9309&rft.artnum=e9309&rft.issn=2167-8359&rft.eissn=2167-8359&rft_id=info:doi/10.7717/peerj.9309&rft_dat=%3Cproquest_doaj_%3E2414908589%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414908589&rft_id=info:pmid/32601550&rfr_iscdi=true