Loading…
Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa , its structure, gene expression and RNA editing
Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar...
Saved in:
Published in: | PeerJ (San Francisco, CA) CA), 2020-06, Vol.8, p.e9309-e9309, Article e9309 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3 |
container_end_page | e9309 |
container_issue | |
container_start_page | e9309 |
container_title | PeerJ (San Francisco, CA) |
container_volume | 8 |
creator | Shtratnikova, Viktoria Yu Schelkunov, Mikhail I. Penin, Aleksey A. Logacheva, Maria D. |
description | Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of
Hypopitys monotropa
, a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of
H. monotropa
is larger than that of its photosynthetic relative
Vaccinium macrocarpon
, and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the
H. monotropa
mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts. |
doi_str_mv | 10.7717/peerj.9309 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f9e0b83a35464b58b2e7ccb5b713ad06</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f9e0b83a35464b58b2e7ccb5b713ad06</doaj_id><sourcerecordid>2414908589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3</originalsourceid><addsrcrecordid>eNpdkt9qFDEUxgdRbKm98QkC3oh0azKZzCQ3QinWFqqC6HVIMmd2s8zkjElG3FfwqZvdLWLNTc6fjx_nHL6qes3oZdex7v0MELeXilP1rDqtWdutJBfq-T_xSXWe0paWJ-uWSv6yOuElYELQ0-rPZ5_RbTD00ZuRrCHgBAQHkjdAAoZ5gxnTLpQ0e0emncMSQcQccd6UyjyakMntbsbZ510iE4ZDz5AL4nMiKcfF5SXCxR4OBH7PEVLyGIgJPfn25YpA77MP61fVi8GMCc4f_7Pqx83H79e3q_uvn-6ur-5XrmlUXgHjHeO2boSiAG1ZhDWmrYUFJms7SCVkO1hZxIwKK8FJy3hD2x5aaRvr-Fl1d-T2aLZ6jn4ycafReH0oYFxrE8uyI-hBAbWSGy6atrFC2ho656ywZQLT07awPhxZ82In6B2EHM34BPq0E_xGr_GX7jjtREcL4O0jIOLPBVLWk08OxnJVwCXpumGKKinrukjf_Cfd4hJDOdVe1SgqhVRF9e6ochFTijD8HYZRvXeMPjhG7x3DHwC9KLYO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414908589</pqid></control><display><type>article</type><title>Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa , its structure, gene expression and RNA editing</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Shtratnikova, Viktoria Yu ; Schelkunov, Mikhail I. ; Penin, Aleksey A. ; Logacheva, Maria D.</creator><creatorcontrib>Shtratnikova, Viktoria Yu ; Schelkunov, Mikhail I. ; Penin, Aleksey A. ; Logacheva, Maria D.</creatorcontrib><description>Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of
Hypopitys monotropa
, a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of
H. monotropa
is larger than that of its photosynthetic relative
Vaccinium macrocarpon
, and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the
H. monotropa
mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.</description><identifier>ISSN: 2167-8359</identifier><identifier>EISSN: 2167-8359</identifier><identifier>DOI: 10.7717/peerj.9309</identifier><identifier>PMID: 32601550</identifier><language>eng</language><publisher>San Diego: PeerJ, Inc</publisher><subject>Chromosomes ; Deoxyribonucleic acid ; DNA ; Flowering ; Fungi ; Gene expression ; Gene transfer ; Genomes ; Genomics ; Horizontal transfer ; Hypopitys ; Hypopitys monotropa ; Library collections ; Mitochondria ; Mitochondrial genome ; Mycoheterotrophic plants ; Non-photosynthetic plants ; Plant Science ; Proteins ; RNA editing ; Splicing</subject><ispartof>PeerJ (San Francisco, CA), 2020-06, Vol.8, p.e9309-e9309, Article e9309</ispartof><rights>2020 Shtratnikova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Shtratnikova et al. 2020 Shtratnikova et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3</citedby><cites>FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3</cites><orcidid>0000-0001-8804-7281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414908589/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414908589?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Shtratnikova, Viktoria Yu</creatorcontrib><creatorcontrib>Schelkunov, Mikhail I.</creatorcontrib><creatorcontrib>Penin, Aleksey A.</creatorcontrib><creatorcontrib>Logacheva, Maria D.</creatorcontrib><title>Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa , its structure, gene expression and RNA editing</title><title>PeerJ (San Francisco, CA)</title><description>Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of
Hypopitys monotropa
, a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of
H. monotropa
is larger than that of its photosynthetic relative
Vaccinium macrocarpon
, and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the
H. monotropa
mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.</description><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Flowering</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Gene transfer</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Horizontal transfer</subject><subject>Hypopitys</subject><subject>Hypopitys monotropa</subject><subject>Library collections</subject><subject>Mitochondria</subject><subject>Mitochondrial genome</subject><subject>Mycoheterotrophic plants</subject><subject>Non-photosynthetic plants</subject><subject>Plant Science</subject><subject>Proteins</subject><subject>RNA editing</subject><subject>Splicing</subject><issn>2167-8359</issn><issn>2167-8359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9qFDEUxgdRbKm98QkC3oh0azKZzCQ3QinWFqqC6HVIMmd2s8zkjElG3FfwqZvdLWLNTc6fjx_nHL6qes3oZdex7v0MELeXilP1rDqtWdutJBfq-T_xSXWe0paWJ-uWSv6yOuElYELQ0-rPZ5_RbTD00ZuRrCHgBAQHkjdAAoZ5gxnTLpQ0e0emncMSQcQccd6UyjyakMntbsbZ510iE4ZDz5AL4nMiKcfF5SXCxR4OBH7PEVLyGIgJPfn25YpA77MP61fVi8GMCc4f_7Pqx83H79e3q_uvn-6ur-5XrmlUXgHjHeO2boSiAG1ZhDWmrYUFJms7SCVkO1hZxIwKK8FJy3hD2x5aaRvr-Fl1d-T2aLZ6jn4ycafReH0oYFxrE8uyI-hBAbWSGy6atrFC2ho656ywZQLT07awPhxZ82In6B2EHM34BPq0E_xGr_GX7jjtREcL4O0jIOLPBVLWk08OxnJVwCXpumGKKinrukjf_Cfd4hJDOdVe1SgqhVRF9e6ochFTijD8HYZRvXeMPjhG7x3DHwC9KLYO</recordid><startdate>20200619</startdate><enddate>20200619</enddate><creator>Shtratnikova, Viktoria Yu</creator><creator>Schelkunov, Mikhail I.</creator><creator>Penin, Aleksey A.</creator><creator>Logacheva, Maria D.</creator><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8804-7281</orcidid></search><sort><creationdate>20200619</creationdate><title>Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa , its structure, gene expression and RNA editing</title><author>Shtratnikova, Viktoria Yu ; Schelkunov, Mikhail I. ; Penin, Aleksey A. ; Logacheva, Maria D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Flowering</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Gene transfer</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Horizontal transfer</topic><topic>Hypopitys</topic><topic>Hypopitys monotropa</topic><topic>Library collections</topic><topic>Mitochondria</topic><topic>Mitochondrial genome</topic><topic>Mycoheterotrophic plants</topic><topic>Non-photosynthetic plants</topic><topic>Plant Science</topic><topic>Proteins</topic><topic>RNA editing</topic><topic>Splicing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shtratnikova, Viktoria Yu</creatorcontrib><creatorcontrib>Schelkunov, Mikhail I.</creatorcontrib><creatorcontrib>Penin, Aleksey A.</creatorcontrib><creatorcontrib>Logacheva, Maria D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ (San Francisco, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shtratnikova, Viktoria Yu</au><au>Schelkunov, Mikhail I.</au><au>Penin, Aleksey A.</au><au>Logacheva, Maria D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa , its structure, gene expression and RNA editing</atitle><jtitle>PeerJ (San Francisco, CA)</jtitle><date>2020-06-19</date><risdate>2020</risdate><volume>8</volume><spage>e9309</spage><epage>e9309</epage><pages>e9309-e9309</pages><artnum>e9309</artnum><issn>2167-8359</issn><eissn>2167-8359</eissn><abstract>Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of
Hypopitys monotropa
, a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of
H. monotropa
is larger than that of its photosynthetic relative
Vaccinium macrocarpon
, and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the
H. monotropa
mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.</abstract><cop>San Diego</cop><pub>PeerJ, Inc</pub><pmid>32601550</pmid><doi>10.7717/peerj.9309</doi><orcidid>https://orcid.org/0000-0001-8804-7281</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2167-8359 |
ispartof | PeerJ (San Francisco, CA), 2020-06, Vol.8, p.e9309-e9309, Article e9309 |
issn | 2167-8359 2167-8359 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f9e0b83a35464b58b2e7ccb5b713ad06 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Chromosomes Deoxyribonucleic acid DNA Flowering Fungi Gene expression Gene transfer Genomes Genomics Horizontal transfer Hypopitys Hypopitys monotropa Library collections Mitochondria Mitochondrial genome Mycoheterotrophic plants Non-photosynthetic plants Plant Science Proteins RNA editing Splicing |
title | Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa , its structure, gene expression and RNA editing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20genome%20of%20the%20nonphotosynthetic%20mycoheterotrophic%20plant%20Hypopitys%20monotropa%20,%20its%20structure,%20gene%20expression%20and%20RNA%20editing&rft.jtitle=PeerJ%20(San%20Francisco,%20CA)&rft.au=Shtratnikova,%20Viktoria%20Yu&rft.date=2020-06-19&rft.volume=8&rft.spage=e9309&rft.epage=e9309&rft.pages=e9309-e9309&rft.artnum=e9309&rft.issn=2167-8359&rft.eissn=2167-8359&rft_id=info:doi/10.7717/peerj.9309&rft_dat=%3Cproquest_doaj_%3E2414908589%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-e13713b24590ee660114a625be182bf89586fb8c44105b8ec8b13406de68b4bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414908589&rft_id=info:pmid/32601550&rfr_iscdi=true |