Loading…
p-Laplacian Equations in R + N with Critical Boundary Nonlinearity
In this paper, we consider the following p-Laplacian equation in R+N with critical boundary nonlinearity. The existence of infinitely many solutions of the equation is proved via the truncation method.
Saved in:
Published in: | Mathematics (Basel) 2020-09, Vol.8 (9), p.1520 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1390-fb757b82414c22d6574852991ce65afe4f822f5643dc87b6bf17e6b8b9d08333 |
container_end_page | |
container_issue | 9 |
container_start_page | 1520 |
container_title | Mathematics (Basel) |
container_volume | 8 |
creator | Miao, Xu Zhao, Junfang Liu, Xiangqing |
description | In this paper, we consider the following p-Laplacian equation in R+N with critical boundary nonlinearity. The existence of infinitely many solutions of the equation is proved via the truncation method. |
doi_str_mv | 10.3390/math8091520 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fa0eec1d6e6545cf89cace4e5b6b0d70</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fa0eec1d6e6545cf89cace4e5b6b0d70</doaj_id><sourcerecordid>oai_doaj_org_article_fa0eec1d6e6545cf89cace4e5b6b0d70</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1390-fb757b82414c22d6574852991ce65afe4f822f5643dc87b6bf17e6b8b9d08333</originalsourceid><addsrcrecordid>eNpNkFtLAzEQhYMoWGqf_AN5L6u5bpJHW6oWSgXp-zKbi03Z7tbsFum_N1qRzssM58A3h4PQPSUPnBvyuIdhq4mhkpErNGKMqUJl_frivkWTvt-RPIZyLcwIzQ7FCg4N2AgtXnweYYhd2-PY4nc8xWv8FYctnqc4RAsNnnXH1kE64XXXNrH1kI3THboJ0PR-8rfHaPO82Mxfi9Xby3L-tCosza-LUCupas0EFZYxV0oltGTGUOtLCcGLoBkLshTcWa3qsg5U-bLWtXFEc87HaHnGug521SHFfQ5SdRCrX6FLHxWkHLPxVQDivaWuzGQhbdDGgvXCy0wlTpHMmp5ZNnV9n3z451FS_ZRZXZTJvwE0NGZ7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>p-Laplacian Equations in R + N with Critical Boundary Nonlinearity</title><source>Publicly Available Content Database</source><creator>Miao, Xu ; Zhao, Junfang ; Liu, Xiangqing</creator><creatorcontrib>Miao, Xu ; Zhao, Junfang ; Liu, Xiangqing</creatorcontrib><description>In this paper, we consider the following p-Laplacian equation in R+N with critical boundary nonlinearity. The existence of infinitely many solutions of the equation is proved via the truncation method.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math8091520</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>critical boundary nonlinearity ; multiple solutions ; p-Laplacian equation ; the truncation method</subject><ispartof>Mathematics (Basel), 2020-09, Vol.8 (9), p.1520</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1390-fb757b82414c22d6574852991ce65afe4f822f5643dc87b6bf17e6b8b9d08333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Miao, Xu</creatorcontrib><creatorcontrib>Zhao, Junfang</creatorcontrib><creatorcontrib>Liu, Xiangqing</creatorcontrib><title>p-Laplacian Equations in R + N with Critical Boundary Nonlinearity</title><title>Mathematics (Basel)</title><description>In this paper, we consider the following p-Laplacian equation in R+N with critical boundary nonlinearity. The existence of infinitely many solutions of the equation is proved via the truncation method.</description><subject>critical boundary nonlinearity</subject><subject>multiple solutions</subject><subject>p-Laplacian equation</subject><subject>the truncation method</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkFtLAzEQhYMoWGqf_AN5L6u5bpJHW6oWSgXp-zKbi03Z7tbsFum_N1qRzssM58A3h4PQPSUPnBvyuIdhq4mhkpErNGKMqUJl_frivkWTvt-RPIZyLcwIzQ7FCg4N2AgtXnweYYhd2-PY4nc8xWv8FYctnqc4RAsNnnXH1kE64XXXNrH1kI3THboJ0PR-8rfHaPO82Mxfi9Xby3L-tCosza-LUCupas0EFZYxV0oltGTGUOtLCcGLoBkLshTcWa3qsg5U-bLWtXFEc87HaHnGug521SHFfQ5SdRCrX6FLHxWkHLPxVQDivaWuzGQhbdDGgvXCy0wlTpHMmp5ZNnV9n3z451FS_ZRZXZTJvwE0NGZ7</recordid><startdate>20200907</startdate><enddate>20200907</enddate><creator>Miao, Xu</creator><creator>Zhao, Junfang</creator><creator>Liu, Xiangqing</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20200907</creationdate><title>p-Laplacian Equations in R + N with Critical Boundary Nonlinearity</title><author>Miao, Xu ; Zhao, Junfang ; Liu, Xiangqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1390-fb757b82414c22d6574852991ce65afe4f822f5643dc87b6bf17e6b8b9d08333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>critical boundary nonlinearity</topic><topic>multiple solutions</topic><topic>p-Laplacian equation</topic><topic>the truncation method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Xu</creatorcontrib><creatorcontrib>Zhao, Junfang</creatorcontrib><creatorcontrib>Liu, Xiangqing</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Xu</au><au>Zhao, Junfang</au><au>Liu, Xiangqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>p-Laplacian Equations in R + N with Critical Boundary Nonlinearity</atitle><jtitle>Mathematics (Basel)</jtitle><date>2020-09-07</date><risdate>2020</risdate><volume>8</volume><issue>9</issue><spage>1520</spage><pages>1520-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>In this paper, we consider the following p-Laplacian equation in R+N with critical boundary nonlinearity. The existence of infinitely many solutions of the equation is proved via the truncation method.</abstract><pub>MDPI AG</pub><doi>10.3390/math8091520</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2020-09, Vol.8 (9), p.1520 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fa0eec1d6e6545cf89cace4e5b6b0d70 |
source | Publicly Available Content Database |
subjects | critical boundary nonlinearity multiple solutions p-Laplacian equation the truncation method |
title | p-Laplacian Equations in R + N with Critical Boundary Nonlinearity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=p-Laplacian%20Equations%20in%20R%20+%20N%20with%20Critical%20Boundary%20Nonlinearity&rft.jtitle=Mathematics%20(Basel)&rft.au=Miao,%20Xu&rft.date=2020-09-07&rft.volume=8&rft.issue=9&rft.spage=1520&rft.pages=1520-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math8091520&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_fa0eec1d6e6545cf89cace4e5b6b0d70%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1390-fb757b82414c22d6574852991ce65afe4f822f5643dc87b6bf17e6b8b9d08333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |