Loading…
Deposition of Ureido and Methacrylate Functionalities Onto Silica Nanoparticles and its Effect on the Properties of Polypropylene-Based Nanodielectrics
Surface modification of nanoparticles is often utilized to tailor the interfacial properties in dielectric nanocomposites. Introducing different functional groups to the nanoparticles' surface may induce localized states (traps) that can enhance the dielectric performance of the material depend...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.130340-130352 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-571e68c0cd1c75d28c46d9fe919c6821223d41966efb9eabf32a40ba9ba14c383 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-571e68c0cd1c75d28c46d9fe919c6821223d41966efb9eabf32a40ba9ba14c383 |
container_end_page | 130352 |
container_issue | |
container_start_page | 130340 |
container_title | IEEE access |
container_volume | 9 |
creator | Mahtabani, Amirhossein Niittymaki, Minna Anyszka, Rafal Rytoluoto, Ilkka He, Xiaozhen Saarimaki, Eetta Lahti, Kari Paajanen, Mika Dierkes, Wilma Blume, Anke |
description | Surface modification of nanoparticles is often utilized to tailor the interfacial properties in dielectric nanocomposites. Introducing different functional groups to the nanoparticles' surface may induce localized states (traps) that can enhance the dielectric performance of the material depending on their density and energy levels. Furthermore, surface modification of the filler can affect the dispersion quality and crystallization of the nanocomposites which can ultimately alter the dielectric response of the material. In this study, functionalization of silica nanoparticles is demonstrated using 3-(trimethoxysilyl)propyl methacrylate (TMPM) and 1-[3-(trimethoxysilyl)propyl]urea (TMPU) as modifying agents. The effect of such modifications on the crystallization behavior, dispersion quality of the nanoparticles, as well as charge trapping and transport under a medium DC field is studied in nanocomposites based on polypropylene (PP)/ethylene-octene-copolymer (EOC) blends at 1% and 5% of filler concentrations. The results show that both ureido and methacrylate functional groups introduce localized states, but with different energy levels. Nitrogen containing ureido groups in TMPU tend to introduce deeper traps to the filler-polymer interfaces, compared to the methacrylate silane modification. Comparing the two types of surface functionalization, the ureido-functionalized silica resulted in a suppression of space charge formation at the interfaces under a medium DC electric field, despite the relatively larger mean cluster size of nanoparticles. |
doi_str_mv | 10.1109/ACCESS.2021.3112849 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fa18dfd4839444b8899ead55771d521f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9537757</ieee_id><doaj_id>oai_doaj_org_article_fa18dfd4839444b8899ead55771d521f</doaj_id><sourcerecordid>2577554719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-571e68c0cd1c75d28c46d9fe919c6821223d41966efb9eabf32a40ba9ba14c383</originalsourceid><addsrcrecordid>eNpNkc1uGyEUhUdRKiVK8gTZIHU9zvA3A8vUdVpL-ZPcrBEDlwZrOkwBL_wkfd1ijxWFDehyznd176mqW9wsMG7k3f1yudpsFqQheEExJoLJs-qS4FbWlNP2_NP7orpJaduUI0qJd5fVv-8wheSzDyMKDr1F8DYgPVr0BPldm7gfdAb0sBvNQaOHIoWEXsYc0MYP3mj0rMcw6Zi9GcrPwepzQivnwGRUsPkd0GsME8SjtXR5DcN-KpX9ACPU33QCe6RYD0MxRW_SdfXF6SHBzem-qt4eVr-WP-vHlx_r5f1jbVgjcs07DK0wjbHYdNwSYVhrpQOJpWkFwYRQy7BsW3C9BN07SjRrei17jZmhgl5V65lrg96qKfo_Ou5V0F4dCyH-VqfRlNNYWGeZoJIx1gshC9Fy3nXYcoJdYX2dWWW2vztIWW3DLpadJUWKinPWYVlUdFaZGFKK4D664kYdAlVzoOoQqDoFWly3s8sDwIdDclq4Hf0PRLmfDA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577554719</pqid></control><display><type>article</type><title>Deposition of Ureido and Methacrylate Functionalities Onto Silica Nanoparticles and its Effect on the Properties of Polypropylene-Based Nanodielectrics</title><source>IEEE Xplore Open Access Journals</source><creator>Mahtabani, Amirhossein ; Niittymaki, Minna ; Anyszka, Rafal ; Rytoluoto, Ilkka ; He, Xiaozhen ; Saarimaki, Eetta ; Lahti, Kari ; Paajanen, Mika ; Dierkes, Wilma ; Blume, Anke</creator><creatorcontrib>Mahtabani, Amirhossein ; Niittymaki, Minna ; Anyszka, Rafal ; Rytoluoto, Ilkka ; He, Xiaozhen ; Saarimaki, Eetta ; Lahti, Kari ; Paajanen, Mika ; Dierkes, Wilma ; Blume, Anke</creatorcontrib><description>Surface modification of nanoparticles is often utilized to tailor the interfacial properties in dielectric nanocomposites. Introducing different functional groups to the nanoparticles' surface may induce localized states (traps) that can enhance the dielectric performance of the material depending on their density and energy levels. Furthermore, surface modification of the filler can affect the dispersion quality and crystallization of the nanocomposites which can ultimately alter the dielectric response of the material. In this study, functionalization of silica nanoparticles is demonstrated using 3-(trimethoxysilyl)propyl methacrylate (TMPM) and 1-[3-(trimethoxysilyl)propyl]urea (TMPU) as modifying agents. The effect of such modifications on the crystallization behavior, dispersion quality of the nanoparticles, as well as charge trapping and transport under a medium DC field is studied in nanocomposites based on polypropylene (PP)/ethylene-octene-copolymer (EOC) blends at 1% and 5% of filler concentrations. The results show that both ureido and methacrylate functional groups introduce localized states, but with different energy levels. Nitrogen containing ureido groups in TMPU tend to introduce deeper traps to the filler-polymer interfaces, compared to the methacrylate silane modification. Comparing the two types of surface functionalization, the ureido-functionalized silica resulted in a suppression of space charge formation at the interfaces under a medium DC electric field, despite the relatively larger mean cluster size of nanoparticles.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3112849</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Copolymers ; Crystallization ; Dielectrics ; Dispersion ; Electric fields ; electrical properties ; Energy levels ; Fillers ; Functional groups ; HVDC ; insulation materials ; Interfacial properties ; Nanocomposites ; Nanoparticles ; Polymer blends ; Polypropylene ; silica nanoparticles ; Silicon compounds ; Silicon dioxide ; Space charge ; Surface functionalization ; Surface morphology</subject><ispartof>IEEE access, 2021, Vol.9, p.130340-130352</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-571e68c0cd1c75d28c46d9fe919c6821223d41966efb9eabf32a40ba9ba14c383</citedby><cites>FETCH-LOGICAL-c408t-571e68c0cd1c75d28c46d9fe919c6821223d41966efb9eabf32a40ba9ba14c383</cites><orcidid>0000-0002-0369-8390 ; 0000-0003-2038-012X ; 0000-0003-3027-3045 ; 0000-0003-0367-6439 ; 0000-0001-9686-5524 ; 0000-0001-7759-4845 ; 0000-0002-9018-9200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9537757$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Mahtabani, Amirhossein</creatorcontrib><creatorcontrib>Niittymaki, Minna</creatorcontrib><creatorcontrib>Anyszka, Rafal</creatorcontrib><creatorcontrib>Rytoluoto, Ilkka</creatorcontrib><creatorcontrib>He, Xiaozhen</creatorcontrib><creatorcontrib>Saarimaki, Eetta</creatorcontrib><creatorcontrib>Lahti, Kari</creatorcontrib><creatorcontrib>Paajanen, Mika</creatorcontrib><creatorcontrib>Dierkes, Wilma</creatorcontrib><creatorcontrib>Blume, Anke</creatorcontrib><title>Deposition of Ureido and Methacrylate Functionalities Onto Silica Nanoparticles and its Effect on the Properties of Polypropylene-Based Nanodielectrics</title><title>IEEE access</title><addtitle>Access</addtitle><description>Surface modification of nanoparticles is often utilized to tailor the interfacial properties in dielectric nanocomposites. Introducing different functional groups to the nanoparticles' surface may induce localized states (traps) that can enhance the dielectric performance of the material depending on their density and energy levels. Furthermore, surface modification of the filler can affect the dispersion quality and crystallization of the nanocomposites which can ultimately alter the dielectric response of the material. In this study, functionalization of silica nanoparticles is demonstrated using 3-(trimethoxysilyl)propyl methacrylate (TMPM) and 1-[3-(trimethoxysilyl)propyl]urea (TMPU) as modifying agents. The effect of such modifications on the crystallization behavior, dispersion quality of the nanoparticles, as well as charge trapping and transport under a medium DC field is studied in nanocomposites based on polypropylene (PP)/ethylene-octene-copolymer (EOC) blends at 1% and 5% of filler concentrations. The results show that both ureido and methacrylate functional groups introduce localized states, but with different energy levels. Nitrogen containing ureido groups in TMPU tend to introduce deeper traps to the filler-polymer interfaces, compared to the methacrylate silane modification. Comparing the two types of surface functionalization, the ureido-functionalized silica resulted in a suppression of space charge formation at the interfaces under a medium DC electric field, despite the relatively larger mean cluster size of nanoparticles.</description><subject>Copolymers</subject><subject>Crystallization</subject><subject>Dielectrics</subject><subject>Dispersion</subject><subject>Electric fields</subject><subject>electrical properties</subject><subject>Energy levels</subject><subject>Fillers</subject><subject>Functional groups</subject><subject>HVDC</subject><subject>insulation materials</subject><subject>Interfacial properties</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polymer blends</subject><subject>Polypropylene</subject><subject>silica nanoparticles</subject><subject>Silicon compounds</subject><subject>Silicon dioxide</subject><subject>Space charge</subject><subject>Surface functionalization</subject><subject>Surface morphology</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1uGyEUhUdRKiVK8gTZIHU9zvA3A8vUdVpL-ZPcrBEDlwZrOkwBL_wkfd1ijxWFDehyznd176mqW9wsMG7k3f1yudpsFqQheEExJoLJs-qS4FbWlNP2_NP7orpJaduUI0qJd5fVv-8wheSzDyMKDr1F8DYgPVr0BPldm7gfdAb0sBvNQaOHIoWEXsYc0MYP3mj0rMcw6Zi9GcrPwepzQivnwGRUsPkd0GsME8SjtXR5DcN-KpX9ACPU33QCe6RYD0MxRW_SdfXF6SHBzem-qt4eVr-WP-vHlx_r5f1jbVgjcs07DK0wjbHYdNwSYVhrpQOJpWkFwYRQy7BsW3C9BN07SjRrei17jZmhgl5V65lrg96qKfo_Ou5V0F4dCyH-VqfRlNNYWGeZoJIx1gshC9Fy3nXYcoJdYX2dWWW2vztIWW3DLpadJUWKinPWYVlUdFaZGFKK4D664kYdAlVzoOoQqDoFWly3s8sDwIdDclq4Hf0PRLmfDA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Mahtabani, Amirhossein</creator><creator>Niittymaki, Minna</creator><creator>Anyszka, Rafal</creator><creator>Rytoluoto, Ilkka</creator><creator>He, Xiaozhen</creator><creator>Saarimaki, Eetta</creator><creator>Lahti, Kari</creator><creator>Paajanen, Mika</creator><creator>Dierkes, Wilma</creator><creator>Blume, Anke</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0369-8390</orcidid><orcidid>https://orcid.org/0000-0003-2038-012X</orcidid><orcidid>https://orcid.org/0000-0003-3027-3045</orcidid><orcidid>https://orcid.org/0000-0003-0367-6439</orcidid><orcidid>https://orcid.org/0000-0001-9686-5524</orcidid><orcidid>https://orcid.org/0000-0001-7759-4845</orcidid><orcidid>https://orcid.org/0000-0002-9018-9200</orcidid></search><sort><creationdate>2021</creationdate><title>Deposition of Ureido and Methacrylate Functionalities Onto Silica Nanoparticles and its Effect on the Properties of Polypropylene-Based Nanodielectrics</title><author>Mahtabani, Amirhossein ; Niittymaki, Minna ; Anyszka, Rafal ; Rytoluoto, Ilkka ; He, Xiaozhen ; Saarimaki, Eetta ; Lahti, Kari ; Paajanen, Mika ; Dierkes, Wilma ; Blume, Anke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-571e68c0cd1c75d28c46d9fe919c6821223d41966efb9eabf32a40ba9ba14c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Copolymers</topic><topic>Crystallization</topic><topic>Dielectrics</topic><topic>Dispersion</topic><topic>Electric fields</topic><topic>electrical properties</topic><topic>Energy levels</topic><topic>Fillers</topic><topic>Functional groups</topic><topic>HVDC</topic><topic>insulation materials</topic><topic>Interfacial properties</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polymer blends</topic><topic>Polypropylene</topic><topic>silica nanoparticles</topic><topic>Silicon compounds</topic><topic>Silicon dioxide</topic><topic>Space charge</topic><topic>Surface functionalization</topic><topic>Surface morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahtabani, Amirhossein</creatorcontrib><creatorcontrib>Niittymaki, Minna</creatorcontrib><creatorcontrib>Anyszka, Rafal</creatorcontrib><creatorcontrib>Rytoluoto, Ilkka</creatorcontrib><creatorcontrib>He, Xiaozhen</creatorcontrib><creatorcontrib>Saarimaki, Eetta</creatorcontrib><creatorcontrib>Lahti, Kari</creatorcontrib><creatorcontrib>Paajanen, Mika</creatorcontrib><creatorcontrib>Dierkes, Wilma</creatorcontrib><creatorcontrib>Blume, Anke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahtabani, Amirhossein</au><au>Niittymaki, Minna</au><au>Anyszka, Rafal</au><au>Rytoluoto, Ilkka</au><au>He, Xiaozhen</au><au>Saarimaki, Eetta</au><au>Lahti, Kari</au><au>Paajanen, Mika</au><au>Dierkes, Wilma</au><au>Blume, Anke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deposition of Ureido and Methacrylate Functionalities Onto Silica Nanoparticles and its Effect on the Properties of Polypropylene-Based Nanodielectrics</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>130340</spage><epage>130352</epage><pages>130340-130352</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Surface modification of nanoparticles is often utilized to tailor the interfacial properties in dielectric nanocomposites. Introducing different functional groups to the nanoparticles' surface may induce localized states (traps) that can enhance the dielectric performance of the material depending on their density and energy levels. Furthermore, surface modification of the filler can affect the dispersion quality and crystallization of the nanocomposites which can ultimately alter the dielectric response of the material. In this study, functionalization of silica nanoparticles is demonstrated using 3-(trimethoxysilyl)propyl methacrylate (TMPM) and 1-[3-(trimethoxysilyl)propyl]urea (TMPU) as modifying agents. The effect of such modifications on the crystallization behavior, dispersion quality of the nanoparticles, as well as charge trapping and transport under a medium DC field is studied in nanocomposites based on polypropylene (PP)/ethylene-octene-copolymer (EOC) blends at 1% and 5% of filler concentrations. The results show that both ureido and methacrylate functional groups introduce localized states, but with different energy levels. Nitrogen containing ureido groups in TMPU tend to introduce deeper traps to the filler-polymer interfaces, compared to the methacrylate silane modification. Comparing the two types of surface functionalization, the ureido-functionalized silica resulted in a suppression of space charge formation at the interfaces under a medium DC electric field, despite the relatively larger mean cluster size of nanoparticles.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3112849</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0369-8390</orcidid><orcidid>https://orcid.org/0000-0003-2038-012X</orcidid><orcidid>https://orcid.org/0000-0003-3027-3045</orcidid><orcidid>https://orcid.org/0000-0003-0367-6439</orcidid><orcidid>https://orcid.org/0000-0001-9686-5524</orcidid><orcidid>https://orcid.org/0000-0001-7759-4845</orcidid><orcidid>https://orcid.org/0000-0002-9018-9200</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.130340-130352 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fa18dfd4839444b8899ead55771d521f |
source | IEEE Xplore Open Access Journals |
subjects | Copolymers Crystallization Dielectrics Dispersion Electric fields electrical properties Energy levels Fillers Functional groups HVDC insulation materials Interfacial properties Nanocomposites Nanoparticles Polymer blends Polypropylene silica nanoparticles Silicon compounds Silicon dioxide Space charge Surface functionalization Surface morphology |
title | Deposition of Ureido and Methacrylate Functionalities Onto Silica Nanoparticles and its Effect on the Properties of Polypropylene-Based Nanodielectrics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deposition%20of%20Ureido%20and%20Methacrylate%20Functionalities%20Onto%20Silica%20Nanoparticles%20and%20its%20Effect%20on%20the%20Properties%20of%20Polypropylene-Based%20Nanodielectrics&rft.jtitle=IEEE%20access&rft.au=Mahtabani,%20Amirhossein&rft.date=2021&rft.volume=9&rft.spage=130340&rft.epage=130352&rft.pages=130340-130352&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3112849&rft_dat=%3Cproquest_doaj_%3E2577554719%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-571e68c0cd1c75d28c46d9fe919c6821223d41966efb9eabf32a40ba9ba14c383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577554719&rft_id=info:pmid/&rft_ieee_id=9537757&rfr_iscdi=true |