Loading…
A Generative Adversarial Network with Spatial Attention Mechanism for Building Structure Inference Based on Unmanned Aerial Vehicle Remote Sensing Images
The acquisition of building structures has broad applications across various fields. However, existing methods for inferring building structures predominantly depend on manual expertise, lacking sufficient automation. To tackle this challenge, we propose a building structure inference network that u...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-09, Vol.15 (18), p.4390 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The acquisition of building structures has broad applications across various fields. However, existing methods for inferring building structures predominantly depend on manual expertise, lacking sufficient automation. To tackle this challenge, we propose a building structure inference network that utilizes UAV remote sensing images, with the PIX2PIX network serving as the foundational framework. We enhance the generator by incorporating an additive attention module that performs multi-scale feature fusion, enabling the combination of features from diverse spatial resolutions of the feature map. This modification enhances the model’s capability to emphasize global relationships during the mapping process. To ensure the completeness of line elements in the generator’s output, we design a novel loss function based on the Hough transform. A line penalty term is introduced that transforms the output of the generator and ground truth to the Hough domain due to the original loss function’s inability to effectively constrain the completeness of straight-line elements in the generated results in the spatial domain. A dataset of the appearance features obtained from UAV remote sensing images and the internal floor plan structure is made. Using UAV remote sensing images of multi-story residential buildings, high-rise residential buildings, and office buildings as test collections, the experimental results show that our method has better performance in inferring a room’s layout and the locations of load-bearing columns, achieving an average improvement of 11.2% and 21.1% over PIX2PIX in terms of the IoU and RMSE, respectively. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15184390 |