Loading…

Tracing Acinetobacter baumannii’s Journey from Hospitals to Aquatic Ecosystems

Background: This study provides a comprehensive analysis of Acinetobacter baumannii in aquatic environments and fish microbiota by integrating culture-dependent methods, 16S metagenomics, and antibiotic resistance profiling. Methods: A total of 83 A. baumannii isolates were recovered using culture-d...

Full description

Saved in:
Bibliographic Details
Published in:Microorganisms (Basel) 2024-08, Vol.12 (8), p.1703
Main Authors: Gheorghe-Barbu, Irina, Dragomir, Rares-Ionut, Gradisteanu Pircalabioru, Gratiela, Surleac, Marius, Dinu, Iulia Adelina, Gaboreanu, Madalina Diana, Czobor Barbu, Ilda
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: This study provides a comprehensive analysis of Acinetobacter baumannii in aquatic environments and fish microbiota by integrating culture-dependent methods, 16S metagenomics, and antibiotic resistance profiling. Methods: A total of 83 A. baumannii isolates were recovered using culture-dependent methods from intra-hospital infections (IHI) and wastewater (WW) and surface water (SW) samples from two southern Romanian cities in August 2022. The antibiotic susceptibility was screened using disc diffusion, microdilution, PCR, and Whole Genome Sequencing assays. Results: The highest microbial load in the analyzed samples was found in Glina, Bucharest, for both WW and SW samples across all investigated phenotypes. For Bucharest isolates, the resistance levels corresponded to fluoroquinolones > aminoglycosides > β-lactam antibiotics. In contrast, A. baumannii from upstream SW samples in Târgoviște showed the highest resistance to aminoglycosides. The bla [sub.OXA-23] gene was frequently detected in IHI, WW, and SW isolates in Bucharest, but was absent in Târgoviște. Molecular phylogeny revealed the presence of ST10 in Târgoviște isolates and ST2 in Bucharest isolates, while other minor STs were not specifically correlated with a sampling point. Using 16S rRNA sequencing, significant differences in microbial populations between the two locations was identified. The low abundance of Alphaproteobacteria and Actinobacteria in both locations suggests environmental pressures or contamination events. Conclusions: These findings indicate significant fecal contamination and potential public health risks, emphasizing the need for improved water quality monitoring and management.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms12081703